/* RetroArch - A frontend for libretro. * Copyright (C) 2018 - Stuart Carnie * copyright (c) 2011-2021 - Daniel De Matteis * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #import "metal_shader_types.h" using namespace metal; #pragma mark - ribbon simple namespace ribbon { float iqhash(float n) { return fract(sin(n) * 43758.5453); } float noise(float3 x) { float3 p = floor(x); float3 f = fract(x); f = f * f * (3.0 - 2.0 * f); float n = p.x + p.y * 57.0 + 113.0 * p.z; return mix(mix(mix(iqhash(n), iqhash(n + 1.0), f.x), mix(iqhash(n + 57.0), iqhash(n + 58.0), f.x), f.y), mix(mix(iqhash(n + 113.0), iqhash(n + 114.0), f.x), mix(iqhash(n + 170.0), iqhash(n + 171.0), f.x), f.y), f.z); } float xmb_noise2(float3 x, const device Uniforms &constants) { return cos(x.z * 4.0) * cos(x.z + constants.time / 10.0 + x.x); } } #pragma mark - ribbon simple vertex FontFragmentIn ribbon_simple_vertex(const SpriteVertex in [[ stage_in ]], const device Uniforms &constants [[ buffer(BufferIndexUniforms) ]]) { float4 t = (constants.projectionMatrix * float4(in.position, 0, 1)); float3 v = float3(t.x, 0.0, 1.0-t.y); float3 v2 = v; v2.x = v2.x + constants.time / 2.0; v2.z = v.z * 3.0; v.y = cos((v.x + v.z / 3.0 + constants.time) * 2.0) / 10.0 + ribbon::noise(v2.xyz) / 4.0; v.y = -v.y; FontFragmentIn out; out.position = float4(v, 1.0); return out; } fragment float4 ribbon_simple_fragment() { return float4(0.05, 0.05, 0.05, 1.0); } #pragma mark - ribbon typedef struct { vector_float4 position [[position]]; vector_float3 vEC; } RibbonOutIn; vertex RibbonOutIn ribbon_vertex(const SpriteVertex in [[ stage_in ]], const device Uniforms &constants [[ buffer(BufferIndexUniforms) ]]) { float4 t = (constants.projectionMatrix * float4(in.position, 0, 1)); float3 v = float3(t.x, 0.0, 1.0-t.y); float3 v2 = v; float3 v3 = v; v.y = ribbon::xmb_noise2(v2, constants) / 8.0; v3.x -= constants.time / 5.0; v3.x /= 4.0; v3.z -= constants.time / 10.0; v3.y -= constants.time / 100.0; v.z -= ribbon::noise(v3 * 7.0) / 15.0; v.y -= ribbon::noise(v3 * 7.0) / 15.0 + cos(v.x * 2.0 - constants.time / 2.0) / 5.0 - 0.3; v.y = -v.y; RibbonOutIn out; out.vEC = v; out.position = float4(v, 1.0); return out; } fragment float4 ribbon_fragment(RibbonOutIn in [[ stage_in ]]) { const float3 up = float3(0.0, 0.0, 1.0); float3 x = dfdx(in.vEC); float3 y = dfdy(in.vEC); float3 normal = normalize(cross(x, y)); float c = 1.0 - dot(normal, up); c = (1.0 - cos(c * c)) / 13.0; return float4(c, c, c, 1.0); } #pragma mark - snow constants constant float snowBaseScale [[ function_constant(0) ]]; // [1.0 .. 10.0] constant float snowDensity [[ function_constant(1) ]]; // [0.01 .. 1.0] constant float snowSpeed [[ function_constant(2) ]]; // [0.1 .. 1.0] #pragma mark - snow simple namespace snow { float rand(float2 co) { return fract(sin(dot(co.xy, float2(12.9898, 78.233))) * 43758.5453); } float dist_func(float2 distv) { float dist = sqrt((distv.x * distv.x) + (distv.y * distv.y)) * (40.0 / snowBaseScale); dist = clamp(dist, 0.0, 1.0); return cos(dist * (3.14159265358 * 0.5)) * 0.5; } float random_dots(float2 co) { float part = 1.0 / 20.0; float2 cd = floor(co / part); float p = rand(cd); if (p > 0.005 * (snowDensity * 40.0)) return 0.0; float2 dpos = (float2(fract(p * 2.0) , p) + float2(2.0, 2.0)) * 0.25; float2 cellpos = fract(co / part); float2 distv = (cellpos - dpos); return dist_func(distv); } float snow(float2 pos, float time, float scale) { // add wobble pos.x += cos(pos.y * 1.2 + time * 3.14159 * 2.0 + 1.0 / scale) / (8.0 / scale) * 4.0; // add gravity pos += time * scale * float2(-0.5, 1.0) * 4.0; return random_dots(pos / scale) * (scale * 0.5 + 0.5); } } fragment float4 snow_fragment(FontFragmentIn in [[ stage_in ]], const device Uniforms &constants [[ buffer(BufferIndexUniforms) ]]) { float tim = constants.time * 0.4 * snowSpeed; float2 pos = in.position.xy / constants.outputSize.xx; pos.y = 1.0 - pos.y; // Flip Y float a = 0.0; // Each of these is a layer of snow // Remove some for better performance // Changing the scale (3rd value) will mess with the looping a += snow::snow(pos, tim, 1.0); a += snow::snow(pos, tim, 0.7); a += snow::snow(pos, tim, 0.6); a += snow::snow(pos, tim, 0.5); a += snow::snow(pos, tim, 0.4); a += snow::snow(pos, tim, 0.3); a += snow::snow(pos, tim, 0.25); a += snow::snow(pos, tim, 0.125); a = a * min(pos.y * 4.0, 1.0); return float4(1.0, 1.0, 1.0, a); } fragment float4 bokeh_fragment(FontFragmentIn in [[ stage_in ]], const device Uniforms &constants [[ buffer(BufferIndexUniforms) ]]) { float speed = constants.time * 4.0; float2 uv = -1.0 + 2.0 * in.position.xy / constants.outputSize; uv.x *= constants.outputSize.x / constants.outputSize.y; float3 color = float3(0.0); for( int i=0; i < 8; i++ ) { float pha = sin(float(i) * 546.13 + 1.0) * 0.5 + 0.5; float siz = pow(sin(float(i) * 651.74 + 5.0) * 0.5 + 0.5, 4.0); float pox = sin(float(i) * 321.55 + 4.1) * constants.outputSize.x / constants.outputSize.y; float rad = 0.1 + 0.5 * siz + sin(pha + siz) / 4.0; float2 pos = float2(pox + sin(speed / 15. + pha + siz), - 1.0 - rad + (2.0 + 2.0 * rad) * fract(pha + 0.3 * (speed / 7.) * (0.2 + 0.8 * siz))); float dis = length(uv - pos); if(dis < rad) { float3 col = mix(float3(0.194 * sin(speed / 6.0) + 0.3, 0.2, 0.3 * pha), float3(1.1 * sin(speed / 9.0) + 0.3, 0.2 * pha, 0.4), 0.5 + 0.5 * sin(float(i))); color += col.zyx * (1.0 - smoothstep(rad * 0.15, rad, dis)); } } color *= sqrt(1.5 - 0.5 * length(uv)); return float4(color.r, color.g, color.b , 0.5); } namespace snowflake { float rand_float(float x) { return snow::rand(float2(x, 1.0)); } float snow(float3 pos, float2 uv, float o, float atime) { float2 d = (pos.xy - uv); float a = atan(d.y / d.x) + sin(atime*1.0 + o) * 10.0; float dist = d.x*d.x + d.y*d.y; if(dist < pos.z/400.0) { float col = 0.0; if(sin(a * 8.0) < 0.0) { col=1.0; } if(dist < pos.z/800.0) { col+=1.0; } return col * pos.z; } return 0.0; } float col(float2 c, const device Uniforms &constants) { float color = 0.0; float atime = (constants.time + 1.0) / 4.0; for (int i = 1; i < 15; i++) { float o = rand_float(float(i) / 3.0) * 15.0; float z = rand_float(float(i) + 13.0); float x = 1.8 - (3.6) * (rand_float(floor((constants.time*((z + 1.0) / 2.0) +o) / 2.0)) + sin(constants.time * o /1000.0) / 10.0); float y = 1.0 - fmod((constants.time * ((z + 1.0)/2.0)) + o, 2.0); color += snow(float3(x,y,z), c, o, atime); } return color; } } fragment float4 snowflake_fragment(FontFragmentIn in [[ stage_in ]], const device Uniforms &constants [[ buffer(BufferIndexUniforms) ]]) { float2 uv = in.position.xy / constants.outputSize.xy; uv = uv * 2.0 - 1.0; float2 p = uv; p.x *= constants.outputSize.x / constants.outputSize.y; //p.y = -p.y; float c = snowflake::col(p, constants); return float4(c,c,c,c); }