/* The MIT License (MIT) Copyright (c) 2015 Lachlan Tychsen-Smith (lachlan.ts@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef __MATH_NEON_H__ #define __MATH_NEON_H__ #if !defined(__i386__) && defined(__arm__) //if defined neon ASM routines are used, otherwise all calls to *_neon //functions are rerouted to their equivalent *_c function. #define __MATH_NEON //Default Floating Point value ABI: 0=softfp, 1=hardfp. Only effects *_neon routines. //You can access the hardfp versions directly via the *_hard suffix. //You can access the softfp versions directly via the *_soft suffix. #define __MATH_FPABI 1 #endif #ifdef GCC #define ALIGN(A) __attribute__ ((aligned (A)) #else #define ALIGN(A) #endif #ifndef _MATH_H #define M_PI 3.14159265358979323846 /* pi */ #define M_PI_2 1.57079632679489661923 /* pi/2 */ #define M_PI_4 0.78539816339744830962 /* pi/4 */ #define M_E 2.7182818284590452354 /* e */ #define M_LOG2E 1.4426950408889634074 /* log_2 e */ #define M_LOG10E 0.43429448190325182765 /* log_10 e */ #define M_LN2 0.69314718055994530942 /* log_e 2 */ #define M_LN10 2.30258509299404568402 /* log_e 10 */ #define M_1_PI 0.31830988618379067154 /* 1/pi */ #define M_2_PI 0.63661977236758134308 /* 2/pi */ #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */ #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */ #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */ #endif #if __MATH_FPABI == 1 #define sinf_neon sinf_neon_hfp #define cosf_neon cosf_neon_hfp #define sincosf_neon sincosf_neon_hfp #define tanf_neon tanf_neon_hfp #define atanf_neon atanf_neon_hfp #define atan2f_neon atan2f_neon_hfp #define asinf_neon asinf_neon_hfp #define acosf_neon acosf_neon_hfp #define sinhf_neon sinhf_neon_hfp #define coshf_neon coshf_neon_hfp #define tanhf_neon tanhf_neon_hfp #define expf_neon expf_neon_hfp #define logf_neon logf_neon_hfp #define log10f_neon log10f_neon_hfp #define powf_neon powf_neon_hfp #define floorf_neon floorf_neon_hfp #define ceilf_neon ceilf_neon_hfp #define fabsf_neon fabsf_neon_hfp #define ldexpf_neon ldexpf_neon_hfp #define frexpf_neon frexpf_neon_hfp #define fmodf_neon fmodf_neon_hfp #define modf_neon modf_neon_hfp #define sqrtf_neon sqrtf_neon_hfp #define invsqrtf_neon invsqrtf_neon_hfp #define dot2_neon dot2_neon_hfp #define dot3_neon dot3_neon_hfp #define dot4_neon dot4_neon_hfp #else #define sinf_neon sinf_neon_sfp #define cosf_neon cosf_neon_sfp #define sincosf_neon sincosf_neon_sfp #define tanf_neon tanf_neon_sfp #define atanf_neon atanf_neon_sfp #define atan2f_neon atan2f_neon_sfp #define asinf_neon asinf_neon_sfp #define acosf_neon acosf_neon_sfp #define sinhf_neon sinhf_neon_sfp #define coshf_neon coshf_neon_sfp #define tanhf_neon tanhf_neon_sfp #define expf_neon expf_neon_sfp #define logf_neon logf_neon_sfp #define log10f_neon log10f_neon_sfp #define powf_neon powf_neon_sfp #define floorf_neon floorf_neon_sfp #define ceilf_neon ceilf_neon_sfp #define fabsf_neon fabsf_neon_sfp #define ldexpf_neon ldexpf_neon_sfp #define frexpf_neon frexpf_neon_sfp #define fmodf_neon fmodf_neon_sfp #define modf_neon modf_neon_sfp #define sqrtf_neon sqrtf_neon_sfp #define invsqrtf_neon invsqrtf_neon_sfp #define dot2_neon dot2_neon_sfp #define dot3_neon dot3_neon_sfp #define dot4_neon dot4_neon_sfp #endif /* function: enable_runfast this function enables the floating point runfast mode on the ARM Cortex A8. */ void enable_runfast(); float dot2_c(float v0[2], float v1[2]); float dot2_neon(float v0[2], float v1[2]); float dot3_c(float v0[3], float v1[3]); float dot3_neon(float v0[3], float v1[3]); float dot4_c(float v0[4], float v1[4]); float dot4_neon(float v0[4], float v1[4]); void cross3_c(float v0[3], float v1[3], float d[3]); void cross3_neon(float v0[3], float v1[3], float d[3]); void normalize2_c(float v[2], float d[2]); void normalize2_neon(float v[2], float d[2]); void normalize3_c(float v[3], float d[3]); void normalize3_neon(float v[3], float d[3]); void normalize4_c(float v[4], float d[4]); void normalize4_neon(float v[4], float d[4]); /* function: matmul2 arguments: m0 2x2 matrix, m1 2x2 matrix return: d 2x2 matrix expression: d = m0 * m1 */ void matmul2_c(float m0[4], float m1[4], float d[4]); void matmul2_neon(float m0[4], float m1[4], float d[4]); /* function: matmul3 arguments: m0 3x3 matrix, m1 3x3 matrix return: d 3x3 matrix expression: d = m0 * m1 */ void matmul3_c(float m0[9], float m1[9], float d[9]); void matmul3_neon(float m0[9], float m1[9], float d[9]); /* function: matmul4 arguments: m0 4x4 matrix, m1 4x4 matrix return: d 4x4 matrix expression: d = m0 * m1 */ void matmul4_c(float m0[16], float m1[16], float d[16]); void matmul4_neon(float m0[16], float m1[16], float d[16]); /* function: matvec2 arguments: m 2x2 matrix, v 2 element vector return: d 2x2 matrix expression: d = m * v */ void matvec2_c(float m[4], float v[2], float d[2]); void matvec2_neon(float m[4], float v[2], float d[2]); /* function: matvec3 arguments: m 3x3 matrix, v 3 element vector return: d 3x3 matrix expression: d = m * v */ void matvec3_c(float m[9], float v[3], float d[3]); void matvec3_neon(float m[9], float v[3], float d[3]); /* function: matvec4 arguments: m 4x4 matrix, v 4 element vector return: d 4x4 matrix expression: d = m * v */ void matvec4_c(float m[16], float v[4], float d[4]); void matvec4_neon(float m[16], float v[4], float d[4]); /* function: sinf arguments: x radians return: the sine function evaluated at x radians. expression: r = sin(x) */ float sinf_c(float x); float sinf_neon_hfp(float x); float sinf_neon_sfp(float x); /* function: cosf arguments: x radians return: the cosine function evaluated at x radians. expression: r = cos(x) notes: computed using cos(x) = sin(x + pi/2) */ float cosf_c(float x); float cosf_neon_hfp(float x); float cosf_neon_sfp(float x); /* function: sincosf arguments: x radians, r[2] result array. return: both the sine and the cosine evaluated at x radians. expression: r = {sin(x), cos(x)} notes: faster than evaluating seperately. */ void sincosf_c(float x, float r[2]); void sincosf_neon_hfp(float x, float r[2]); void sincosf_neon_sfp(float x, float r[2]); /* function: sinfv return: the sine function evaluated at x[i] radians expression: r[i] = sin(x[i]) notes: faster than evaluating individually. r and x can be the same memory location. */ void sinfv_c(float *x, int n, float *r); void sinfv_neon(float *x, int n, float *r); /* function: tanf return: the tangent evaluated at x radians. expression: r = tan(x) notes: computed using tan(x) = sin(x) / cos(x) */ float tanf_c(float x); float tanf_neon_hfp(float x); float tanf_neon_sfp(float x); /* function: atanf return: the arctangent evaluated at x. expression: r = atan(x) */ float atanf_c(float x); float atanf_neon_hfp(float x); float atanf_neon_sfp(float x); /* function: atanf return: the arctangent evaluated at x. expression: r = atan(x) */ float atan2f_c(float y, float x); float atan2f_neon_hfp(float y, float x); float atan2f_neon_sfp(float y, float x); /* function: asinf return: the arcsine evaluated at x. expression: r = asin(x) */ float asinf_c(float x); float asinf_neon_hfp(float x); float asinf_neon_sfp(float x); /* function: acosf return: the arcsine evaluated at x. expression: r = asin(x) */ float acosf_c(float x); float acosf_neon_hfp(float x); float acosf_neon_sfp(float x); /* function: sinhf return: the arcsine evaluated at x. expression: r = asin(x) */ float sinhf_c(float x); float sinhf_neon_hfp(float x); float sinhf_neon_sfp(float x); /* function: coshf return: the arcsine evaluated at x. expression: r = asin(x) */ float coshf_c(float x); float coshf_neon_hfp(float x); float coshf_neon_sfp(float x); /* function: tanhf return: the arcsine evaluated at x. expression: r = asin(x) */ float tanhf_c(float x); float tanhf_neon_hfp(float x); float tanhf_neon_sfp(float x); /* function: expf return: the natural exponential evaluated at x. expression: r = e ** x */ float expf_c(float x); float expf_neon_hfp(float x); float expf_neon_sfp(float x); /* function: logf return: the value of the natural logarithm of x. expression: r = ln(x) notes: assumes x > 0 */ float logf_c(float x); float logf_neon_hfp(float x); float logf_neon_sfp(float x); /* function: log10f return: the value of the power 10 logarithm of x. expression: r = log10(x) notes: assumes x > 0 */ float log10f_c(float x); float log10f_neon_hfp(float x); float log10f_neon_sfp(float x); /* function: powf return: x raised to the power of n, x ** n. expression: r = x ** y notes: computed using e ** (y * ln(x)) */ float powf_c(float x, float n); float powf_neon_sfp(float x, float n); float powf_neon_hfp(float x, float n); /* function: floorf return: x rounded down (towards negative infinity) to its nearest integer value. notes: assumes |x| < 2 ** 31 */ float floorf_c(float x); float floorf_neon_sfp(float x); float floorf_neon_hfp(float x); /* function: ceilf return: x rounded up (towards positive infinity) to its nearest integer value. notes: assumes |x| < 2 ** 31 */ float ceilf_c(float x); float ceilf_neon_hfp(float x); float ceilf_neon_sfp(float x); /* function: fabsf return: absolute vvalue of x notes: assumes |x| < 2 ** 31 */ float fabsf_c(float x); float fabsf_neon_hfp(float x); float fabsf_neon_sfp(float x); /* function: ldexpf return: the value of m multiplied by 2 to the power of e. expression: r = m * (2 ** e) */ float ldexpf_c(float m, int e); float ldexpf_neon_hfp(float m, int e); float ldexpf_neon_sfp(float m, int e); /* function: frexpf return: the exponent and mantissa of x */ float frexpf_c(float x, int *e); float frexpf_neon_hfp(float x, int *e); float frexpf_neon_sfp(float x, int *e); /* function: fmodf return: the remainder of x divided by y, x % y expression: r = x - floor(x / y) * y; notes: assumes that |x / y| < 2 ** 31 */ float fmodf_c(float x, float y); float fmodf_neon_hfp(float x, float y); float fmodf_neon_sfp(float x, float y); /* function: modf return: breaks x into the integer (i) and fractional part (return) notes: assumes that |x| < 2 ** 31 */ float modf_c(float x, int *i); float modf_neon_hfp(float x, int *i); float modf_neon_sfp(float x, int *i); /* function: sqrtf return: (x^0.5) notes: */ float sqrtf_c(float x); float sqrtf_neon_hfp(float x); float sqrtf_neon_sfp(float x); /* function: invsqrtf return: 1.0f / (x^0.5) notes: */ float invsqrtf_c(float x); float invsqrtf_neon_hfp(float x); float invsqrtf_neon_sfp(float x); #endif