/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2013 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include "../resampler.h" #include "../utils.h" #include #include #include #include #include #include #include #undef min #define min(a, b) (((a) < (b)) ? (a) : (b)) static void gen_signal(float *out, double omega, double bias_samples, size_t samples) { for (size_t i = 0; i < samples; i += 2) { out[i + 0] = cos(((i >> 1) + bias_samples) * omega); out[i + 1] = out[i + 0]; } } struct snr_result { double snr; double gain; unsigned alias_freq[3]; double alias_power[3]; }; static unsigned bitrange(unsigned len) { unsigned ret = 0; while ((len >>= 1)) ret++; return ret; } static unsigned bitswap(unsigned i, unsigned range) { unsigned ret = 0; for (unsigned shifts = 0; shifts < range; shifts++) ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0; return ret; } // When interleaving the butterfly buffer, addressing puts bits in reverse. // [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7] static void interleave(complex double *butterfly_buf, size_t samples) { unsigned range = bitrange(samples); for (unsigned i = 0; i < samples; i++) { unsigned target = bitswap(i, range); if (target > i) { complex double tmp = butterfly_buf[target]; butterfly_buf[target] = butterfly_buf[i]; butterfly_buf[i] = tmp; } } } static complex double gen_phase(double index) { return cexp(M_PI * I * index); } static void butterfly(complex double *a, complex double *b, complex double mod) { mod *= *b; complex double a_ = *a + mod; complex double b_ = *a - mod; *a = a_; *b = b_; } static void butterflies(complex double *butterfly_buf, double phase_dir, size_t step_size, size_t samples) { for (unsigned i = 0; i < samples; i += 2 * step_size) for (unsigned j = i; j < i + step_size; j++) butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((phase_dir * (j - i)) / step_size)); } static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples) { // Enforce POT. assert((samples & (samples - 1)) == 0); for (unsigned i = 0; i < samples; i++) butterfly_buf[i] = data[2 * i]; // Interleave buffer to work with FFT. interleave(butterfly_buf, samples); // Fly, lovely butterflies! :D for (unsigned step_size = 1; step_size < samples; step_size *= 2) butterflies(butterfly_buf, -1.0, step_size, samples); } static void calculate_fft_adjust(complex double *butterfly_buf, double gain, bool merge_high, size_t samples) { if (merge_high) { for (unsigned i = 1; i < samples / 2; i++) butterfly_buf[i] *= 2.0; } // Normalize amplitudes. for (unsigned i = 0; i < samples; i++) butterfly_buf[i] *= gain; } static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool normalize) { // Enforce POT. assert((samples & (samples - 1)) == 0); interleave(butterfly_buf, samples); // Fly, lovely butterflies! In opposite direction! :D for (unsigned step_size = 1; step_size < samples; step_size *= 2) butterflies(butterfly_buf, 1.0, step_size, samples); if (normalize) calculate_fft_adjust(butterfly_buf, 1.0 / samples, false, samples); } static void test_fft(void) { fprintf(stderr, "Sanity checking FFT ...\n"); float signal[32]; complex double butterfly_buf[16]; complex double buf_tmp[16]; const float cos_freqs[] = { 1.0, 4.0, 6.0, }; const float sin_freqs[] = { -2.0, 5.0, 7.0, }; for (unsigned i = 0; i < 16; i++) { signal[2 * i] = 0.0; for (unsigned j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++) signal[2 * i] += cos(2.0 * M_PI * i * cos_freqs[j] / 16.0); for (unsigned j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++) signal[2 * i] += sin(2.0 * M_PI * i * sin_freqs[j] / 16.0); } calculate_fft(signal, butterfly_buf, 16); memcpy(buf_tmp, butterfly_buf, sizeof(buf_tmp)); calculate_fft_adjust(buf_tmp, 1.0 / 16, true, 16); fprintf(stderr, "FFT: { "); for (unsigned i = 0; i < 7; i++) fprintf(stderr, "(%4.2lf, %4.2lf), ", creal(buf_tmp[i]), cimag(buf_tmp[i])); fprintf(stderr, "(%4.2lf, %4.2lf) }\n", creal(buf_tmp[7]), cimag(buf_tmp[7])); calculate_ifft(butterfly_buf, 16, true); fprintf(stderr, "Original: { "); for (unsigned i = 0; i < 15; i++) fprintf(stderr, "%5.2f, ", signal[2 * i]); fprintf(stderr, "%5.2f }\n", signal[2 * 15]); fprintf(stderr, "FFT => IFFT: { "); for (unsigned i = 0; i < 15; i++) fprintf(stderr, "%5.2lf, ", creal(butterfly_buf[i])); fprintf(stderr, "%5.2lf }\n", creal(butterfly_buf[15])); } static void set_alias_power(struct snr_result *res, unsigned freq, double power) { for (unsigned i = 0; i < 3; i++) { if (power >= res->alias_power[i]) { memmove(res->alias_freq + i + 1, res->alias_freq + i, (2 - i) * sizeof(res->alias_freq[0])); memmove(res->alias_power + i + 1, res->alias_power + i, (2 - i) * sizeof(res->alias_power[0])); res->alias_power[i] = power; res->alias_freq[i] = freq; break; } } } static void calculate_snr(struct snr_result *res, unsigned in_rate, unsigned max_rate, const float *resamp, complex double *butterfly_buf, size_t samples) { samples >>= 1; calculate_fft(resamp, butterfly_buf, samples); calculate_fft_adjust(butterfly_buf, 1.0 / samples, true, samples); memset(res, 0, sizeof(*res)); double signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]); butterfly_buf[in_rate] = 0.0; double noise = 0.0; // Aliased frequencies above half the original sampling rate are not considered. for (unsigned i = 0; i <= max_rate; i++) { double power = cabs(butterfly_buf[i] * butterfly_buf[i]); set_alias_power(res, i, power); noise += power; } res->snr = 10.0 * log10(signal / noise); res->gain = 10.0 * log10(signal); for (unsigned i = 0; i < 3; i++) res->alias_power[i] = 10.0 * log10(res->alias_power[i]); } int main(int argc, char *argv[]) { if (argc != 2) { fprintf(stderr, "Usage: %s (out-rate is fixed for FFT).\n", argv[0]); return 1; } double ratio = strtod(argv[1], NULL); const unsigned fft_samples = 1024 * 128; unsigned out_rate = fft_samples / 2; unsigned in_rate = round(out_rate / ratio); ratio = (double)out_rate / in_rate; static const float freq_list[] = { 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050, 0.060, 0.070, 0.080, 0.090, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.495, 0.496, 0.497, 0.498, 0.499, }; unsigned samples = in_rate * 4; float *input = calloc(sizeof(float), samples); float *output = calloc(sizeof(float), (fft_samples + 16) * 2); complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples / 2); assert(input); assert(output); void *re = NULL; const rarch_resampler_t *resampler = NULL; if (!rarch_resampler_realloc(&re, &resampler, NULL, ratio)) return 1; test_fft(); for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++) { unsigned freq = freq_list[i] * in_rate; double omega = 2.0 * M_PI * freq / in_rate; gen_signal(input, omega, 0, samples); struct resampler_data data = { .data_in = input, .data_out = output, .input_frames = in_rate * 2, .ratio = ratio, }; rarch_resampler_process(resampler, re, &data); // We generate 2 seconds worth of audio, however, only the last second is considered so phase has stabilized. struct snr_result res = {0}; unsigned max_freq = min(in_rate, out_rate) / 2; if (freq > max_freq) continue; calculate_snr(&res, freq, max_freq, output + fft_samples - 2048, butterfly_buf, fft_samples); printf("SNR @ w = %5.3f : %6.2lf dB, Gain: %6.1lf dB\n", freq_list[i], res.snr, res.gain); printf("\tAliases: #1 (w = %5.3f, %6.2lf dB), #2 (w = %5.3f, %6.2lf dB), #3 (w = %5.3f, %6.2lf dB)\n", res.alias_freq[0] / (float)in_rate, res.alias_power[0], res.alias_freq[1] / (float)in_rate, res.alias_power[1], res.alias_freq[2] / (float)in_rate, res.alias_power[2]); } rarch_resampler_freep(&resampler, &re); free(input); free(output); free(butterfly_buf); }