% MATLAB test case for RetroArch SINC upsampler. close all; %% % Test RetroArch's kaiser function. real_kaiser = kaiser(1024, 10.0)'; rarch_kaiser = kaiser_window(1024, 10.0); figure('name', 'Bessel function test'); subplot(2, 1, 1), plot(rarch_kaiser), title('RetroArch kaiser'); subplot(2, 1, 2), plot(rarch_kaiser - real_kaiser), title('Error'); %% % 4-tap and 8-tap are Lanczos windowed, but include here for completeness. phases = 256; ratio = 2.0; bw = min(1.0, ratio); downsample = round(phases / ratio); cutoffs = bw * [0.65 0.75 0.825 0.90 0.962]; betas = [2.0 3.0 5.5 10.5 14.5]; sidelobes = round([2 4 8 32 128] / bw); taps = sidelobes * 2; freqs = 0.05 : 0.02 : 0.99; %filters = length(taps); %for i = 1 : filters for i = 5 filter_length = taps(i) * phases; % Generate SINC. sinc_indices = 2 * ((0 : (filter_length - 1)) / filter_length) - 1; s = cutoffs(i) * sinc(cutoffs(i) * sinc_indices * sidelobes(i)); win = kaiser(filter_length, betas(i))'; filter = s .* win; impulse_response_half = upfirdn(1, filter, phases, downsample) / bw; figure('name', sprintf('Response SINC: %d taps', taps(i))); freqz(impulse_response_half); ylim([-200 0]); signal = zeros(1, 80001); for freq = freqs signal = signal + sin(pi * freq * (0 : 80000)); end resampled = upfirdn(signal, filter, phases, downsample); figure('name', sprintf('Kaiser SINC: %d taps, w = %.f', taps(i), freq)); freqz(resampled .* kaiser(length(resampled), 40.0)', 1, 16 * 1024); ylim([-180 100]); end