From faa99bd3230270c1392df206e26ff2d5ffbf288c Mon Sep 17 00:00:00 2001 From: twinaphex Date: Fri, 27 Apr 2018 23:45:06 +0200 Subject: [PATCH] Start adding FLAC hooks --- Makefile.common | 4 + audio/audio_driver.c | 8 + deps/dr/dr_flac.h | 5437 +++++++++++++++++++ libretro-common/audio/audio_mixer.c | 2 +- libretro-common/include/audio/audio_mixer.h | 1 + 5 files changed, 5451 insertions(+), 1 deletion(-) create mode 100644 deps/dr/dr_flac.h diff --git a/Makefile.common b/Makefile.common index 7bde9ea982..59dd0dc7fd 100644 --- a/Makefile.common +++ b/Makefile.common @@ -1437,6 +1437,10 @@ endif ifeq ($(HAVE_BUILTINFLAC),1) HAVE_FLAC = 1 +ifneq ($(C89_BUILD), 1) + DEFINES += -DHAVE_DR_FLAC -I$(DEPS_DIR) + CFLAGS += -DHAVE_DR_FLAC +endif CFLAGS += -DHAVE_FLAC -I$(DEPS_DIR)/libFLAC/include DEFINES += -DHAVE_STDINT_H -DHAVE_LROUND -DFLAC__HAS_OGG=0 \ -DFLAC_PACKAGE_VERSION="\"retroarch\"" diff --git a/audio/audio_driver.c b/audio/audio_driver.c index 4ef2d3ce54..bd810910a6 100644 --- a/audio/audio_driver.c +++ b/audio/audio_driver.c @@ -976,6 +976,9 @@ bool audio_driver_mixer_extension_supported(const char *ext) string_list_append(str_list, "mod", attr); string_list_append(str_list, "s3m", attr); string_list_append(str_list, "xm", attr); +#endif +#ifdef HAVE_DR_FLAC + string_list_append(str_list, "flac", attr); #endif string_list_append(str_list, "wav", attr); @@ -1074,6 +1077,11 @@ bool audio_driver_mixer_add_stream(audio_mixer_stream_params_t *params) case AUDIO_MIXER_TYPE_MOD: handle = audio_mixer_load_mod(buf, (int32_t)params->bufsize); break; + case AUDIO_MIXER_TYPE_FLAC: +#ifdef HAVE_DR_FLAC + handle = audio_mixer_load_flac(buf, (int32_t)params->bufsize); +#endif + break; case AUDIO_MIXER_TYPE_NONE: free(buf); return false; diff --git a/deps/dr/dr_flac.h b/deps/dr/dr_flac.h new file mode 100644 index 0000000000..4789d1a022 --- /dev/null +++ b/deps/dr/dr_flac.h @@ -0,0 +1,5437 @@ +#ifndef dr_flac_h +#define dr_flac_h + +#include + +#if defined(_MSC_VER) && _MSC_VER < 1600 +typedef signed char drflac_int8; +typedef unsigned char drflac_uint8; +typedef signed short drflac_int16; +typedef unsigned short drflac_uint16; +typedef signed int drflac_int32; +typedef unsigned int drflac_uint32; +typedef signed __int64 drflac_int64; +typedef unsigned __int64 drflac_uint64; +#else +#include +typedef int8_t drflac_int8; +typedef uint8_t drflac_uint8; +typedef int16_t drflac_int16; +typedef uint16_t drflac_uint16; +typedef int32_t drflac_int32; +typedef uint32_t drflac_uint32; +typedef int64_t drflac_int64; +typedef uint64_t drflac_uint64; +#endif +typedef drflac_uint8 drflac_bool8; +typedef drflac_uint32 drflac_bool32; +#define DRFLAC_TRUE 1 +#define DRFLAC_FALSE 0 + +/* As data is read from the client it is placed into an internal buffer for fast access. This controls the + * size of that buffer. Larger values means more speed, but also more memory. In my testing there is diminishing + * returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8. + */ +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/* Check if we can enable 64-bit optimizations. */ +#if defined(_WIN64) +#define DRFLAC_64BIT +#endif + +#if defined(__GNUC__) +#if defined(__x86_64__) || defined(__ppc64__) +#define DRFLAC_64BIT +#endif +#endif + +#ifdef DRFLAC_64BIT +typedef drflac_uint64 drflac_cache_t; +#else +typedef drflac_uint32 drflac_cache_t; +#endif + +/* The various metadata block types. */ +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 + +/* The various picture types specified in the PICTURE block. */ +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 + +typedef enum +{ + drflac_container_native, + drflac_container_ogg, + drflac_container_unknown +} drflac_container; + +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; + +/* Packing is important on this structure because we map this directly to the raw data within the SEEKTABLE metadata block. */ +#pragma pack(2) +typedef struct +{ + drflac_uint64 firstSample; + drflac_uint64 frameOffset; /* The offset from the first byte of the header of the first frame. */ + drflac_uint16 sampleCount; +} drflac_seekpoint; +#pragma pack() + +typedef struct +{ + drflac_uint16 minBlockSize; + drflac_uint16 maxBlockSize; + drflac_uint32 minFrameSize; + drflac_uint32 maxFrameSize; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint8 md5[16]; +} drflac_streaminfo; + +typedef struct +{ + /* The metadata type. Use this to know how to interpret the data below. */ + drflac_uint32 type; + + /* A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to + * not modify the contents of this buffer. Use the structures below for more meaningful and structured + * information about the metadata. It's possible for this to be null. + */ + const void* pRawData; + + /* The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. */ + drflac_uint32 rawDataSize; + + union + { + drflac_streaminfo streaminfo; + + struct + { + int unused; + } padding; + + struct + { + drflac_uint32 id; + const void* pData; + drflac_uint32 dataSize; + } application; + + struct + { + drflac_uint32 seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + + struct + { + drflac_uint32 vendorLength; + const char* vendor; + drflac_uint32 commentCount; + const char* comments; + } vorbis_comment; + + struct + { + char catalog[128]; + drflac_uint64 leadInSampleCount; + drflac_bool32 isCD; + drflac_uint8 trackCount; + const drflac_uint8* pTrackData; + } cuesheet; + + struct + { + drflac_uint32 type; + drflac_uint32 mimeLength; + const char* mime; + drflac_uint32 descriptionLength; + const char* description; + drflac_uint32 width; + drflac_uint32 height; + drflac_uint32 colorDepth; + drflac_uint32 indexColorCount; + drflac_uint32 pictureDataSize; + const drflac_uint8* pPictureData; + } picture; + } data; +} drflac_metadata; + + +/* Callback for when data needs to be read from the client. + * + * pUserData [in] The user data that was passed to drflac_open() and family. + * pBufferOut [out] The output buffer. + * bytesToRead [in] The number of bytes to read. + * + * Returns the number of bytes actually read. + * + * A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until + * either the entire bytesToRead is filled or you have reached the end of the stream. + */ +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +/* Callback for when data needs to be seeked. + * + * pUserData [in] The user data that was passed to drflac_open() and family. + * offset [in] The number of bytes to move, relative to the origin. Will never be negative. + * origin [in] The origin of the seek - the current position or the start of the stream. + * + * Returns whether or not the seek was successful. + * + * The offset will never be negative. Whether or not it is relative to the beginning or current position is determined + * by the "origin" parameter which will be either drflac_seek_origin_start or drflac_seek_origin_current. + */ +typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); + +/* Callback for when a metadata block is read. + * + * pUserData [in] The user data that was passed to drflac_open() and family. + * pMetadata [in] A pointer to a structure containing the data of the metadata block. + * + * Use pMetadata->type to determine which metadata block is being handled and how to read the data. + */ +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); + + +/* Structure for internal use. Only used for decoders opened with drflac_open_memory. */ +typedef struct +{ + const drflac_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; + +/* Structure for internal use. Used for bit streaming. */ +typedef struct +{ + /* The function to call when more data needs to be read. */ + drflac_read_proc onRead; + + /* The function to call when the current read position needs to be moved. */ + drflac_seek_proc onSeek; + + /* The user data to pass around to onRead and onSeek. */ + void* pUserData; + + + // The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the + // stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether + // or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t). + size_t unalignedByteCount; + + // The content of the unaligned bytes. + drflac_cache_t unalignedCache; + + // The index of the next valid cache line in the "L2" cache. + drflac_uint32 nextL2Line; + + // The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. + drflac_uint32 consumedBits; + + // The cached data which was most recently read from the client. There are two levels of cache. Data flows as such: + // Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions. + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + + // CRC-16. This is updated whenever bits are read from the bit stream. Manually set this to 0 to reset the CRC. For FLAC, this + // is reset to 0 at the beginning of each frame. + drflac_uint16 crc16; + drflac_cache_t crc16Cache; // A cache for optimizing CRC calculations. This is filled when when the L1 cache is reloaded. + drflac_uint32 crc16CacheIgnoredBytes; // The number of bytes to ignore when updating the CRC-16 from the CRC-16 cache. +} drflac_bs; + +typedef struct +{ + // The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. + drflac_uint8 subframeType; + + // The number of wasted bits per sample as specified by the sub-frame header. + drflac_uint8 wastedBitsPerSample; + + // The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. + drflac_uint8 lpcOrder; + + // The number of bits per sample for this subframe. This is not always equal to the current frame's bit per sample because + // an extra bit is required for side channels when interchannel decorrelation is being used. + drflac_uint32 bitsPerSample; + + // A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData. Note that + // it's a signed 32-bit integer for each value. + drflac_int32* pDecodedSamples; +} drflac_subframe; + +typedef struct +{ + // If the stream uses variable block sizes, this will be set to the index of the first sample. If fixed block sizes are used, this will + // always be set to 0. + drflac_uint64 sampleNumber; + + // If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. + drflac_uint32 frameNumber; + + // The sample rate of this frame. + drflac_uint32 sampleRate; + + // The number of samples in each sub-frame within this frame. + drflac_uint16 blockSize; + + // The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this + // will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE. + drflac_uint8 channelAssignment; + + // The number of bits per sample within this frame. + drflac_uint8 bitsPerSample; + + // The frame's CRC. + drflac_uint8 crc8; +} drflac_frame_header; + +typedef struct +{ + // The header. + drflac_frame_header header; + + // The number of samples left to be read in this frame. This is initially set to the block size multiplied by the channel count. As samples + // are read, this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame. + drflac_uint32 samplesRemaining; + + // The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. + drflac_subframe subframes[8]; +} drflac_frame; + +typedef struct +{ + // The function to call when a metadata block is read. + drflac_meta_proc onMeta; + + // The user data posted to the metadata callback function. + void* pUserDataMD; + + + // The sample rate. Will be set to something like 44100. + drflac_uint32 sampleRate; + + // The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the + // value specified in the STREAMINFO block. + drflac_uint8 channels; + + // The bits per sample. Will be set to somthing like 16, 24, etc. + drflac_uint8 bitsPerSample; + + // The maximum block size, in samples. This number represents the number of samples in each channel (not combined). + drflac_uint16 maxBlockSize; + + // The total number of samples making up the stream. This includes every channel. For example, if the stream has 2 channels, + // with each channel having a total of 4096, this value will be set to 2*4096 = 8192. Can be 0 in which case it's still a + // valid stream, but just means the total sample count is unknown. Likely the case with streams like internet radio. + drflac_uint64 totalSampleCount; + + + // The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. + drflac_container container; + + + // The position of the seektable in the file. + drflac_uint64 seektablePos; + + // The size of the seektable. + drflac_uint32 seektableSize; + + + // Information about the frame the decoder is currently sitting on. + drflac_frame currentFrame; + + // The position of the first frame in the stream. This is only ever used for seeking. + drflac_uint64 firstFramePos; + + + // A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). + drflac__memory_stream memoryStream; + + + // A pointer to the decoded sample data. This is an offset of pExtraData. + drflac_int32* pDecodedSamples; + + // Internal use only. Only used with Ogg containers. Points to a drflac_oggbs object. This is an offset of pExtraData. + void* _oggbs; + + // The bit streamer. The raw FLAC data is fed through this object. + drflac_bs bs; + + // Variable length extra data. We attach this to the end of the object so we can avoid unnecessary mallocs. + drflac_uint8 pExtraData[1]; +} drflac; + + +// Opens a FLAC decoder. +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated +// FLAC, both of which should work seamlessly without any manual intervention. Ogg encapsulation also works with +// multiplexed streams which basically means it can play FLAC encoded audio tracks in videos. +// +// This is the lowest level function for opening a FLAC stream. You can also use drflac_open_file() and drflac_open_memory() +// to open the stream from a file or from a block of memory respectively. +// +// The STREAMINFO block must be present for this to succeed. Use drflac_open_relaxed() to open a FLAC stream where +// the header may not be present. +// +// See also: drflac_open_file(), drflac_open_memory(), drflac_open_with_metadata(), drflac_close() +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData); + +// The same as drflac_open(), except attempts to open the stream even when a header block is not present. +// +// Because the header is not necessarily available, the caller must explicitly define the container (Native or Ogg). Do +// not set this to drflac_container_unknown - that is for internal use only. +// +// Opening in relaxed mode will continue reading data from onRead until it finds a valid frame. If a frame is never +// found it will continue forever. To abort, force your onRead callback to return 0, which dr_flac will use as an +// indicator that the end of the stream was found. +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData); + +// Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.). +// +// onRead [in] The function to call when data needs to be read from the client. +// onSeek [in] The function to call when the read position of the client data needs to move. +// onMeta [in] The function to call for every metadata block. +// pUserData [in, optional] A pointer to application defined data that will be passed to onRead, onSeek and onMeta. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This is slower than drflac_open(), so avoid this one if you don't need metadata. Internally, this will do a DRFLAC_MALLOC() +// and DRFLAC_FREE() for every metadata block except for STREAMINFO and PADDING blocks. +// +// The caller is notified of the metadata via the onMeta callback. All metadata blocks will be handled before the function +// returns. +// +// The STREAMINFO block must be present for this to succeed. Use drflac_open_with_metadata_relaxed() to open a FLAC +// stream where the header may not be present. +// +// Note that this will behave inconsistently with drflac_open() if the stream is an Ogg encapsulated stream and a metadata +// block is corrupted. This is due to the way the Ogg stream recovers from corrupted pages. When drflac_open_with_metadata() +// is being used, the open routine will try to read the contents of the metadata block, whereas drflac_open() will simply +// seek past it (for the sake of efficiency). This inconsistency can result in different samples being returned depending on +// whether or not the stream is being opened with metadata. +// +// See also: drflac_open_file_with_metadata(), drflac_open_memory_with_metadata(), drflac_open(), drflac_close() +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData); + +// The same as drflac_open_with_metadata(), except attemps to open the stream even when a header block is not present. +// +// See also: drflac_open_with_metadata(), drflac_open_relaxed() +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData); + +// Closes the given FLAC decoder. +// +// pFlac [in] The decoder to close. +// +// This will destroy the decoder object. +void drflac_close(drflac* pFlac); + + +// Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* pBufferOut); + +// Same as drflac_read_s32(), except outputs samples as 16-bit integer PCM rather than 32-bit. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +// +// Note that this is lossy for streams where the bits per sample is larger than 16. +drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut); + +// Same as drflac_read_s32(), except outputs samples as 32-bit floating-point PCM. +// +// pFlac [in] The decoder. +// samplesToRead [in] The number of samples to read. +// pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. +// +// Returns the number of samples actually read. +// +// pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of samples +// seeked. +// +// Note that this should be considered lossy due to the nature of floating point numbers not being able to exactly +// represent every possible number. +drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut); + +// Seeks to the sample at the given index. +// +// pFlac [in] The decoder. +// sampleIndex [in] The index of the sample to seek to. See notes below. +// +// Returns DRFLAC_TRUE if successful; DRFLAC_FALSE otherwise. +// +// The sample index is based on interleaving. In a stereo stream, for example, the sample at index 0 is the first sample +// in the left channel; the sample at index 1 is the first sample on the right channel, and so on. +// +// When seeking, you will likely want to ensure it's rounded to a multiple of the channel count. You can do this with +// something like drflac_seek_to_sample(pFlac, (mySampleIndex + (mySampleIndex % pFlac->channels))) +drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex); + + + +#ifndef DR_FLAC_NO_STDIO +// Opens a FLAC decoder from the file at the given path. +// +// filename [in] The path of the file to open, either absolute or relative to the current directory. +// +// Returns a pointer to an object representing the decoder. +// +// Close the decoder with drflac_close(). +// +// This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the +// number of files a process can have open at any given time, so keep this mind if you have many decoders open at the +// same time. +// +// See also: drflac_open(), drflac_open_file_with_metadata(), drflac_close() +drflac* drflac_open_file(const char* filename); + +// Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData); +#endif + +// Opens a FLAC decoder from a pre-allocated block of memory +// +// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +// the lifetime of the decoder. +drflac* drflac_open_memory(const void* data, size_t dataSize); + +// Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.) +// +// Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData); + + + +//// High Level APIs //// + +// Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a +// pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with DRFLAC_FREE(). +// +// Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously +// read samples into a dynamically sized buffer on the heap until no samples are left. +// +// Do not call this function on a broadcast type of stream (like internet radio streams and whatnot). +drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_s32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +#ifndef DR_FLAC_NO_STDIO +// Same as drflac_open_and_decode_s32() except opens the decoder from a file. +drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_file_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_file_f32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); +#endif + +// Same as drflac_open_and_decode_s32() except opens the decoder from a block of memory. +drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_memory_s32(), except returns signed 16-bit integer samples. +drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Same as drflac_open_and_decode_memory_s32(), except returns 32-bit floating-point samples. +float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); + +// Frees memory that was allocated internally by dr_flac. +void drflac_free(void* p); + + +// Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; + +// Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT +// metadata block. +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const char* pComments); + +// Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The +// returned string is NOT null terminated. +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); + + + +#ifdef __cplusplus +} +#endif +#endif //dr_flac_h + + +/////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +/////////////////////////////////////////////////////////////////////////////// +#ifdef DR_FLAC_IMPLEMENTATION +#include +#include + +// CPU architecture. +#if defined(__x86_64__) || defined(_M_X64) +#define DRFLAC_X64 +#elif defined(__i386) || defined(_M_IX86) +#define DRFLAC_X86 +#elif defined(__arm__) || defined(_M_ARM) +#define DRFLAC_ARM +#endif + +// Compile-time CPU feature support. +#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #ifdef _MSC_VER + #if _MSC_VER >= 1400 + #include + static void drflac__cpuid(int info[4], int fid) + { + __cpuid(info, fid); + } + #else + #define DRFLAC_NO_CPUID + #endif + #else + #if defined(__GNUC__) || defined(__clang__) + static void drflac__cpuid(int info[4], int fid) + { + asm ( + "movl %[fid], %%eax\n\t" + "cpuid\n\t" + "movl %%eax, %[info0]\n\t" + "movl %%ebx, %[info1]\n\t" + "movl %%ecx, %[info2]\n\t" + "movl %%edx, %[info3]\n\t" + : [info0] "=rm"(info[0]), + [info1] "=rm"(info[1]), + [info2] "=rm"(info[2]), + [info3] "=rm"(info[3]) + : [fid] "rm"(fid) + : "eax", "ebx", "ecx", "edx" + ); + } + #else + #define DRFLAC_NO_CPUID + #endif + #endif +#else +#define DRFLAC_NO_CPUID +#endif + + +#ifdef __linux__ +#define _BSD_SOURCE +#include +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) +#define DRFLAC_HAS_LZCNT_INTRINSIC +#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) +#define DRFLAC_HAS_LZCNT_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) + #define DRFLAC_HAS_LZCNT_INTRINSIC + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1300 +#define DRFLAC_HAS_BYTESWAP_INTRINSIC +#elif defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) +#define DRFLAC_HAS_BYTESWAP_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_bswap16) && __has_builtin(__builtin_bswap32) && __has_builtin(__builtin_bswap64) + #define DRFLAC_HAS_BYTESWAP_INTRINSIC + #endif +#endif + + +// Standard library stuff. +#ifndef DRFLAC_ASSERT +#include +#define DRFLAC_ASSERT(expression) assert(expression) +#endif +#ifndef DRFLAC_MALLOC +#define DRFLAC_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRFLAC_REALLOC +#define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRFLAC_FREE +#define DRFLAC_FREE(p) free((p)) +#endif +#ifndef DRFLAC_COPY_MEMORY +#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRFLAC_ZERO_MEMORY +#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif + +#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 // 64 for AVX-512 in the future. + +#ifdef _MSC_VER +#define DRFLAC_INLINE __forceinline +#else +#ifdef __GNUC__ +#define DRFLAC_INLINE inline __attribute__((always_inline)) +#else +#define DRFLAC_INLINE inline +#endif +#endif + +typedef drflac_int32 drflac_result; +#define DRFLAC_SUCCESS 0 +#define DRFLAC_ERROR -1 // A generic error. +#define DRFLAC_INVALID_ARGS -2 +#define DRFLAC_END_OF_STREAM -128 +#define DRFLAC_CRC_MISMATCH -129 + +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 + +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 + +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 + + +#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drflac_assert DRFLAC_ASSERT +#define drflac_copy_memory DRFLAC_COPY_MEMORY +#define drflac_zero_memory DRFLAC_ZERO_MEMORY + + +// CPU caps. +static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; +#ifndef DRFLAC_NO_CPUID +static drflac_bool32 drflac__gIsSSE42Supported = DRFLAC_FALSE; +static void drflac__init_cpu_caps() +{ + int info[4] = {0}; + + // LZCNT + drflac__cpuid(info, 0x80000001); + drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; + + // SSE4.2 + drflac__cpuid(info, 1); + drflac__gIsSSE42Supported = (info[2] & (1 << 19)) != 0; +} +#endif + + +//// Endian Management //// +static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian() +{ +#if defined(DRFLAC_X86) || defined(DRFLAC_X64) + return DRFLAC_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap32(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & (drflac_uint64)0xFF00000000000000) >> 56) | + ((n & (drflac_uint64)0x00FF000000000000) >> 40) | + ((n & (drflac_uint64)0x0000FF0000000000) >> 24) | + ((n & (drflac_uint64)0x000000FF00000000) >> 8) | + ((n & (drflac_uint64)0x00000000FF000000) << 8) | + ((n & (drflac_uint64)0x0000000000FF0000) << 24) | + ((n & (drflac_uint64)0x000000000000FF00) << 40) | + ((n & (drflac_uint64)0x00000000000000FF) << 56); +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) +{ +#ifdef __linux__ + return be16toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) +{ +#ifdef __linux__ + return be32toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) +{ +#ifdef __linux__ + return be64toh(n); +#else + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + + return n; +#endif +} + + +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) +{ +#ifdef __linux__ + return le32toh(n); +#else + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +#endif +} + + +static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) +{ + drflac_uint32 result = 0; + result |= (n & 0x7F000000) >> 3; + result |= (n & 0x007F0000) >> 2; + result |= (n & 0x00007F00) >> 1; + result |= (n & 0x0000007F) >> 0; + + return result; +} + + + +// The CRC code below is based on this document: http://zlib.net/crc_v3.txt +static drflac_uint8 drflac__crc8_table[] = { + 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, + 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, + 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, + 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, + 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, + 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, + 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, + 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, + 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, + 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, + 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, + 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, + 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, + 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, + 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, + 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 +}; + +static drflac_uint16 drflac__crc16_table[] = { + 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, + 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, + 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, + 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, + 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, + 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, + 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, + 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, + 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, + 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, + 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, + 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, + 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, + 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, + 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, + 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, + 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, + 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, + 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, + 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, + 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, + 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, + 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, + 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, + 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, + 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, + 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, + 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, + 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, + 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, + 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, + 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 +}; + +static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) +{ + return drflac__crc8_table[crc ^ data]; +} + +static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) +{ + drflac_assert(count <= 32); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + // REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc8(crc, 0, 8);") + drflac_uint8 p = 0x07; + for (int i = count-1; i >= 0; --i) { + drflac_uint8 bit = (data & (1 << i)) >> i; + if (crc & 0x80) { + crc = ((crc << 1) | bit) ^ p; + } else { + crc = ((crc << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) +{ + return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) +{ + switch (byteCount) + { +#ifdef DRFLAC_64BIT + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + } + + return crc; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) +{ + drflac_assert(count <= 64); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + // REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc16(crc, 0, 16);") + drflac_uint16 p = 0x8005; + for (int i = count-1; i >= 0; --i) { + drflac_uint16 bit = (data & (1ULL << i)) >> i; + if (r & 0x8000) { + r = ((r << 1) | bit) ^ p; + } else { + r = ((r << 1) | bit); + } + } + + return crc; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) +{ + drflac_assert(count <= 64); + +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else + drflac_uint32 wholeBytes = count >> 3; + drflac_uint32 leftoverBits = count - (wholeBytes*8); + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + drflac_uint64 leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0xFF00000000000000 << leftoverBits)) >> (56 + leftoverBits))); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00FF000000000000 << leftoverBits)) >> (48 + leftoverBits))); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x0000FF0000000000 << leftoverBits)) >> (40 + leftoverBits))); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x000000FF00000000 << leftoverBits)) >> (32 + leftoverBits))); + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00000000FF000000 << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x0000000000FF0000 << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x000000000000FF00 << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & ((drflac_uint64)0x00000000000000FF << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) +{ +#ifdef DRFLAC_64BIT + return drflac_crc16__64bit(crc, data, count); +#else + return drflac_crc16__32bit(crc, data, count); +#endif +} + + +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif + +// BIT READING ATTEMPT #2 +// +// This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting +// on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache +// is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an +// array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data +// from onRead() is read into. +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - ((bs)->consumedBits)) +#ifdef DRFLAC_64BIT +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~(((drflac_uint64)-1LL) >> (_bitCount))) +#else +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~(((drflac_uint32)-1) >> (_bitCount))) +#endif +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), _bitCount) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), _bitCount)) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) + + +#ifndef DR_FLAC_NO_CRC +static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) +{ + bs->crc16 = 0; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +} + +static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) +{ + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = 0; +} + +static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) +{ + // We should never be flushing in a situation where we are not aligned on a byte boundary. + drflac_assert((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); + + // The bits that were read from the L1 cache need to be accumulated. The number of bytes needing to be accumulated is determined + // by the number of bits that have been consumed. + if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { + drflac__update_crc16(bs); + } else { + // We only accumulate the consumed bits. + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); + + // The bits that we just accumulated should never be accumulated again. We need to keep track of how many bytes were accumulated + // so we can handle that later. + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; + } + + return bs->crc16; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + // Fast path. Try loading straight from L2. + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + // If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's + // any left. + if (bs->unalignedByteCount > 0) { + return DRFLAC_FALSE; // If we have any unaligned bytes it means there's no more aligned bytes left in the client. + } + + size_t bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + + // If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably + // means we've just reached the end of the file. We need to move the valid data down to the end of the buffer + // and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to + // the size of the L1 so we'll need to seek backwards by any misaligned bytes. + size_t alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + + // We need to keep track of any unaligned bytes for later use. + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + + if (alignedL1LineCount > 0) { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + for (size_t i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + + bs->nextL2Line = (drflac_uint32)offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } else { + // If we get into this branch it means we weren't able to load any L1-aligned data. + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DRFLAC_FALSE; + } +} + +static drflac_bool32 drflac__reload_cache(drflac_bs* bs) +{ +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + + // Fast path. Try just moving the next value in the L2 cache to the L1 cache. + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + return DRFLAC_TRUE; + } + + // Slow path. + + // If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last + // few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the + // data from the unaligned cache. + size_t bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + return DRFLAC_FALSE; + } + + drflac_assert(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs->consumedBits); // <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. + bs->unalignedByteCount = 0; // <-- At this point the unaligned bytes have been moved into the cache and we thus have no more unaligned bytes. + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache >> bs->consumedBits; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +#endif + return DRFLAC_TRUE; +} + +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); // <-- This clears the L2 cache. + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); // <-- This clears the L1 cache. + bs->cache = 0; + bs->unalignedByteCount = 0; // <-- This clears the trailing unaligned bytes. + bs->unalignedCache = 0; + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = 0; + bs->crc16CacheIgnoredBytes = 0; +#endif +} + + +static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) +{ + drflac_assert(bs != NULL); + drflac_assert(pResultOut != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + *pResultOut = (drflac_uint32)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } + return DRFLAC_TRUE; + } else { + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + drflac_uint32 bitCountLo = bitCount - bitCountHi; + drflac_uint32 resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + *pResultOut = (resultHi << bitCountLo) | DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + drflac_uint32 signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResult = (drflac_int32)result; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) +{ + drflac_assert(bitCount <= 64); + drflac_assert(bitCount > 32); + + drflac_uint32 resultHi; + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DRFLAC_FALSE; + } + + drflac_uint32 resultLo; + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DRFLAC_FALSE; + } + + *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); + return DRFLAC_TRUE; +} + +// Function below is unused, but leaving it here in case I need to quickly add it again. +#if 0 +static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) +{ + drflac_assert(bitCount <= 64); + + drflac_uint64 result; + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + drflac_uint64 signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResultOut = (drflac_int64)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint16)result; + return DRFLAC_TRUE; +} + +#if 0 +static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + drflac_int32 result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int16)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + drflac_uint32 result; + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint8)result; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) +{ + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + drflac_int32 result; + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int8)result; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += (drflac_uint32)bitsToSeek; + bs->cache <<= bitsToSeek; + return DRFLAC_TRUE; + } else { + // It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; + + // Simple case. Seek in groups of the same number as bits that fit within a cache line. +#ifdef DRFLAC_64BIT + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint64 bin; + if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#else + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint32 bin; + if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#endif + + // Whole leftover bytes. + while (bitsToSeek >= 8) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, 8, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= 8; + } + + // Leftover bits. + if (bitsToSeek > 0) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek = 0; // <-- Necessary for the assert below. + } + + drflac_assert(bitsToSeek == 0); + return DRFLAC_TRUE; + } +} + + +// This function moves the bit streamer to the first bit after the sync code (bit 15 of the of the frame header). It will also update the CRC-16. +static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) +{ + drflac_assert(bs != NULL); + + // The sync code is always aligned to 8 bits. This is convenient for us because it means we can do byte-aligned movements. The first + // thing to do is align to the next byte. + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + + for (;;) { +#ifndef DR_FLAC_NO_CRC + drflac__reset_crc16(bs); +#endif + + drflac_uint8 hi; + if (!drflac__read_uint8(bs, 8, &hi)) { + return DRFLAC_FALSE; + } + + if (hi == 0xFF) { + drflac_uint8 lo; + if (!drflac__read_uint8(bs, 6, &lo)) { + return DRFLAC_FALSE; + } + + if (lo == 0x3E) { + return DRFLAC_TRUE; + } else { + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + } + } + } + + // Should never get here. + //return DRFLAC_FALSE; +} + + +#if !defined(DR_FLAC_NO_SIMD) && defined(DRFLAC_HAS_LZCNT_INTRINSIC) +#define DRFLAC_IMPLEMENT_CLZ_LZCNT +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) +#define DRFLAC_IMPLEMENT_CLZ_MSVC +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) +{ + static drflac_uint32 clz_table_4[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + + drflac_uint32 n = clz_table_4[x >> (sizeof(x)*8 - 4)]; + if (n == 0) { +#ifdef DRFLAC_64BIT + if ((x & 0xFFFFFFFF00000000ULL) == 0) { n = 32; x <<= 32; } + if ((x & 0xFFFF000000000000ULL) == 0) { n += 16; x <<= 16; } + if ((x & 0xFF00000000000000ULL) == 0) { n += 8; x <<= 8; } + if ((x & 0xF000000000000000ULL) == 0) { n += 4; x <<= 4; } +#else + if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } + if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } + if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } +#endif + n += clz_table_4[x >> (sizeof(x)*8 - 4)]; + } + + return n - 1; +} + +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT +static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported() +{ + // If the compiler itself does not support the intrinsic then we'll need to return false. +#ifdef DRFLAC_HAS_LZCNT_INTRINSIC + return drflac__gIsLZCNTSupported; +#else + return DRFLAC_FALSE; +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) +{ +#if defined(_MSC_VER) && !defined(__clang__) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__lzcnt64(x); + #else + return (drflac_uint32)__lzcnt(x); + #endif +#else + #if defined(__GNUC__) || defined(__clang__) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__builtin_clzll((unsigned long long)x); + #else + return (drflac_uint32)__builtin_clzl((unsigned long)x); + #endif + #else + // Unsupported compiler. + #error "This compiler does not support the lzcnt intrinsic." + #endif +#endif +} +#endif + +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC +static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) +{ + drflac_uint32 n; +#ifdef DRFLAC_64BIT + _BitScanReverse64((unsigned long*)&n, x); +#else + _BitScanReverse((unsigned long*)&n, x); +#endif + return sizeof(x)*8 - n - 1; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) +{ + // This function assumes at least one bit is set. Checking for 0 needs to be done at a higher level, outside this function. +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT + if (drflac__is_lzcnt_supported()) { + return drflac__clz_lzcnt(x); + } else +#endif + { + #ifdef DRFLAC_IMPLEMENT_CLZ_MSVC + return drflac__clz_msvc(x); + #else + return drflac__clz_software(x); + #endif + } +} + + +static inline drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + drflac_uint32 zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + drflac_uint32 setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DRFLAC_TRUE; +} + + + +static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) +{ + drflac_assert(bs != NULL); + drflac_assert(offsetFromStart > 0); + + // Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which + // is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit. + // To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder. + if (offsetFromStart > 0x7FFFFFFF) { + drflac_uint64 bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + } + + // The cache should be reset to force a reload of fresh data from the client. + drflac__reset_cache(bs); + return DRFLAC_TRUE; +} + + +static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) +{ + drflac_assert(bs != NULL); + drflac_assert(pNumberOut != NULL); + + drflac_uint8 crc = *pCRCOut; + + unsigned char utf8[7] = {0}; + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[0], 8); + + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + *pCRCOut = crc; + return DRFLAC_SUCCESS; + } + + int byteCount = 1; + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DRFLAC_CRC_MISMATCH; // Bad UTF-8 encoding. + } + + // Read extra bytes. + drflac_assert(byteCount > 1); + + drflac_uint64 result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); + for (int i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[i], 8); + + result = (result << 6) | (utf8[i] & 0x3F); + } + + *pNumberOut = result; + *pCRCOut = crc; + return DRFLAC_SUCCESS; +} + + + + +// The next two functions are responsible for calculating the prediction. +// +// When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's +// safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16. +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(order <= 32); + + // 32-bit version. + + // VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. + drflac_int32 prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + + return (drflac_int32)(prediction >> shift); +} + +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(order <= 32); + + // 64-bit version. + + // This method is faster on the 32-bit build when compiling with VC++. See note below. +#ifndef DRFLAC_64BIT + drflac_int64 prediction; + if (order == 8) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + } + else + { + prediction = 0; + for (int j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; + } + } +#endif + + // VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some + // reason. The ugly version above is faster so we'll just switch between the two depending on the target platform. +#ifdef DRFLAC_64BIT + drflac_int64 prediction = 0; + + switch (order) + { + case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } +#endif + + return (drflac_int32)(prediction >> shift); +} + +#if 0 +// Reference implementation for reading and decoding samples with residual. This is intentionally left unoptimized for the +// sake of readability and should only be used as a reference. +static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + for (drflac_uint32 i = 0; i < count; ++i) { + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + decodedRice |= (zeroCounter << riceParam); + if ((decodedRice & 0x01)) { + decodedRice = ~(decodedRice >> 1); + } else { + decodedRice = (decodedRice >> 1); + } + + + if (bitsPerSample > 16) { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} +#endif + +#if 0 +static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = decodedRice; + return DRFLAC_TRUE; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_cache_t riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); + drflac_cache_t resultHiShift = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParam; + + + drflac_uint32 zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + drflac_uint32 setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + + drflac_uint32 riceParamPart; + drflac_uint32 riceLength = setBitOffsetPlus1 + riceParam; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> (DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceLength)); + + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + bs->consumedBits += riceLength; + if (setBitOffsetPlus1 < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + bs->cache <<= setBitOffsetPlus1; + } + + // It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. + drflac_uint32 bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + drflac_cache_t resultHi = bs->cache & riceParamMask; // <-- This mask is OK because all bits after the first bits are always zero. + + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; + #endif + } else { + // Slow path. We need to fetch more data from the client. + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + riceParamPart = (drflac_uint32)((resultHi >> resultHiShift) | DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo)); + + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = riceParamPart; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples_with_residual__rice__simple(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + drflac_uint32 zeroCountPart; + drflac_uint32 riceParamPart; + + drflac_uint32 i = 0; + while (i < count) { + // Rice extraction. + if (!drflac__read_rice_parts(bs, riceParam, &zeroCountPart, &riceParamPart)) { + return DRFLAC_FALSE; + } + + // Rice reconstruction. + static drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + riceParamPart |= (zeroCountPart << riceParam); + riceParamPart = (riceParamPart >> 1) ^ t[riceParamPart & 0x01]; + //riceParamPart = (riceParamPart >> 1) ^ (~(riceParamPart & 0x01) + 1); + + // Sample reconstruction. + if (bitsPerSample > 16) { + pSamplesOut[i] = riceParamPart + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = riceParamPart + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + + i += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ +#if 0 + return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); +#else + return drflac__decode_samples_with_residual__rice__simple(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); +#endif +} + +// Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. +static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + + for (drflac_uint32 i = 0; i < count; ++i) { + drflac_uint32 zeroCountPart; + drflac_uint32 riceParamPart; + if (!drflac__read_rice_parts(bs, riceParam, &zeroCountPart, &riceParamPart)) { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(unencodedBitsPerSample > 0 && unencodedBitsPerSample <= 32); + drflac_assert(pSamplesOut != NULL); + + for (unsigned int i = 0; i < count; ++i) { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DRFLAC_FALSE; + } + + if (bitsPerSample > 16) { + pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} + + +// Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be ignored. The +// and parameters are used to determine how many residual values need to be decoded. +static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + drflac_assert(pDecodedSamples != NULL); // <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? + + drflac_uint8 residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; // Unknown or unsupported residual coding method. + } + + // Ignore the first values. + pDecodedSamples += order; + + + drflac_uint8 partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + // From the FLAC spec: + // The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + // Validation check. + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + drflac_uint32 samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + drflac_uint32 partitionsRemaining = (1 << partitionOrder); + for (;;) { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 16) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 32) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } + + pDecodedSamples += samplesInPartition; + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + + if (partitionOrder != 0) { + samplesInPartition = blockSize / (1 << partitionOrder); + } + } + + return DRFLAC_TRUE; +} + +// Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called +// when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be set to 0. The +// and parameters are used to determine how many residual values need to be decoded. +static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) +{ + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + + drflac_uint8 residualMethod; + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; // Unknown or unsupported residual coding method. + } + + drflac_uint8 partitionOrder; + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + drflac_uint32 samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + drflac_uint32 partitionsRemaining = (1 << partitionOrder); + for (;;) + { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 16) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 32) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DRFLAC_FALSE; + } + } + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + // Only a single sample needs to be decoded here. + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + // We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely) + // we'll want to look at a more efficient way. + for (drflac_uint32 i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + for (drflac_uint32 i = 0; i < blockSize; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_int32 lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + + // Warm up samples and coefficients. + for (drflac_uint32 i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint8 i; + + // Warm up samples. + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + drflac_uint8 lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; // Invalid. + } + lpcPrecision += 1; + + + drflac_int8 lpcShift; + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DRFLAC_FALSE; + } + + + drflac_int32 coefficients[32]; + for (i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { + return DRFLAC_FALSE; + } + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__read_next_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) +{ + drflac_assert(bs != NULL); + drflac_assert(header != NULL); + + const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; // -1 = reserved. + + // Keep looping until we find a valid sync code. + for (;;) { + if (!drflac__find_and_seek_to_next_sync_code(bs)) { + return DRFLAC_FALSE; + } + + drflac_uint8 crc8 = 0xCE; // 0xCE = drflac_crc8(0, 0x3FFE, 14); + + drflac_uint8 reserved = 0; + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + drflac_uint8 blockingStrategy = 0; + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockingStrategy, 1); + + + drflac_uint8 blockSize = 0; + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockSize, 4); + + + drflac_uint8 sampleRate = 0; + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, sampleRate, 4); + + + drflac_uint8 channelAssignment = 0; + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, channelAssignment, 4); + + + drflac_uint8 bitsPerSample = 0; + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, bitsPerSample, 3); + + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + drflac_bool32 isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + drflac_uint64 sampleNumber; + drflac_result result = drflac__read_utf8_coded_number(bs, &sampleNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = 0; + header->sampleNumber = sampleNumber; + } else { + drflac_uint64 frameNumber = 0; + drflac_result result = drflac__read_utf8_coded_number(bs, &frameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = (drflac_uint32)frameNumber; // <-- Safe cast. + header->sampleNumber = 0; + } + + + if (blockSize == 1) { + header->blockSize = 192; + } else if (blockSize >= 2 && blockSize <= 5) { + header->blockSize = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 8); + header->blockSize += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 16); + header->blockSize += 1; + } else { + header->blockSize = 256 * (1 << (blockSize - 8)); + } + + + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 8); + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + header->sampleRate *= 10; + } else { + continue; // Invalid. Assume an invalid block. + } + + + header->channelAssignment = channelAssignment; + + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + + if (!drflac__read_uint8(bs, 8, &header->crc8)) { + return DRFLAC_FALSE; + } + + #ifndef DR_FLAC_NO_CRC + if (header->crc8 != crc8) { + continue; // CRC mismatch. Loop back to the top and find the next sync code. + } + #endif + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + drflac_uint8 header; + if (!drflac__read_uint8(bs, 8, &header)) { + return DRFLAC_FALSE; + } + + // First bit should always be 0. + if ((header & 0x80) != 0) { + return DRFLAC_FALSE; + } + + int type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DRFLAC_FALSE; + } + + // Wasted bits per sample. + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = (unsigned char)wastedBitsPerSample + 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) +{ + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = pDecodedSamplesOut; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + drflac_subframe* pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + // Side channels require an extra bit per sample. Took a while to figure that one out... + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + // Need to handle wasted bits per sample. + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = NULL; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, pSubframe->bitsPerSample)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSize * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_LPC: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + unsigned char lpcPrecision; + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; // Invalid. + } + lpcPrecision += 1; + + + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; // +5 for shift. + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) +{ + drflac_assert(channelAssignment <= 10); + + drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + return lookup[channelAssignment]; +} + +static drflac_result drflac__decode_frame(drflac* pFlac) +{ + // This function should be called while the stream is sitting on the first byte after the frame header. + drflac_zero_memory(pFlac->currentFrame.subframes, sizeof(pFlac->currentFrame.subframes)); + + // The frame block size must never be larger than the maximum block size defined by the FLAC stream. + if (pFlac->currentFrame.header.blockSize > pFlac->maxBlockSize) { + return DRFLAC_ERROR; + } + + // The number of channels in the frame must match the channel count from the STREAMINFO block. + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + if (channelCount != (int)pFlac->channels) { + return DRFLAC_ERROR; + } + + for (int i = 0; i < channelCount; ++i) { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFrame, i, pFlac->pDecodedSamples + (pFlac->currentFrame.header.blockSize * i))) { + return DRFLAC_ERROR; + } + } + + drflac_uint8 paddingSizeInBits = DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7; + if (paddingSizeInBits > 0) { + drflac_uint8 padding = 0; + if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { + return DRFLAC_END_OF_STREAM; + } + } + +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + drflac_uint16 desiredCRC16; + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; // CRC mismatch. + } +#endif + + pFlac->currentFrame.samplesRemaining = pFlac->currentFrame.header.blockSize * channelCount; + + return DRFLAC_SUCCESS; +} + +static drflac_result drflac__seek_frame(drflac* pFlac) +{ + int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + for (int i = 0; i < channelCount; ++i) { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFrame, i)) { + return DRFLAC_ERROR; + } + } + + // Padding. + if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { + return DRFLAC_ERROR; + } + + // CRC. +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + drflac_uint16 desiredCRC16; + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; // CRC mismatch. + } +#endif + + return DRFLAC_SUCCESS; +} + +static drflac_bool32 drflac__read_and_decode_next_frame(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + for (;;) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_result result = drflac__decode_frame(pFlac); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Skip to the next frame. + } else { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; + } +} + + +static void drflac__get_current_frame_sample_range(drflac* pFlac, drflac_uint64* pFirstSampleInFrameOut, drflac_uint64* pLastSampleInFrameOut) +{ + drflac_assert(pFlac != NULL); + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + drflac_uint64 firstSampleInFrame = pFlac->currentFrame.header.sampleNumber; + if (firstSampleInFrame == 0) { + firstSampleInFrame = pFlac->currentFrame.header.frameNumber * pFlac->maxBlockSize*channelCount; + } + + drflac_uint64 lastSampleInFrame = firstSampleInFrame + (pFlac->currentFrame.header.blockSize*channelCount); + if (lastSampleInFrame > 0) { + lastSampleInFrame -= 1; // Needs to be zero based. + } + + if (pFirstSampleInFrameOut) *pFirstSampleInFrameOut = firstSampleInFrame; + if (pLastSampleInFrameOut) *pLastSampleInFrameOut = lastSampleInFrame; +} + +static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + drflac_bool32 result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos); + + drflac_zero_memory(&pFlac->currentFrame, sizeof(pFlac->currentFrame)); + return result; +} + +static DRFLAC_INLINE drflac_result drflac__seek_to_next_frame(drflac* pFlac) +{ + // This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. + drflac_assert(pFlac != NULL); + return drflac__seek_frame(pFlac); +} + +static drflac_bool32 drflac__seek_to_sample__brute_force(drflac* pFlac, drflac_uint64 sampleIndex) +{ + // We need to find the frame that contains the sample. To do this, we iterate over each frame and inspect it's header. If based on the + // header we can determine that the frame contains the sample, we do a full decode of that frame. + if (!drflac__seek_to_first_frame(pFlac)) { + return DRFLAC_FALSE; + } + + drflac_uint64 runningSampleCount = 0; + for (;;) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + // it never existed and keep iterating. + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + drflac_uint64 samplesToDecode = (size_t)(sampleIndex - runningSampleCount); // <-- Safe cast because the maximum number of samples in a frame is 65535. + if (samplesToDecode == 0) { + return DRFLAC_TRUE; + } + return drflac_read_s32(pFlac, samplesToDecode, NULL) != 0; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + +static drflac_bool32 drflac__seek_to_sample__seek_table(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_assert(pFlac != NULL); + + if (pFlac->seektablePos == 0) { + return DRFLAC_FALSE; + } + + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->seektablePos)) { + return DRFLAC_FALSE; + } + + // The number of seek points is derived from the size of the SEEKTABLE block. + drflac_uint32 seekpointCount = pFlac->seektableSize / 18; // 18 = the size of each seek point. + if (seekpointCount == 0) { + return DRFLAC_FALSE; // Would this ever happen? + } + + + drflac_seekpoint closestSeekpoint = {0, 0, 0}; + + drflac_uint32 seekpointsRemaining = seekpointCount; + while (seekpointsRemaining > 0) { + drflac_seekpoint seekpoint; + if (!drflac__read_uint64(&pFlac->bs, 64, &seekpoint.firstSample)) { + break; + } + if (!drflac__read_uint64(&pFlac->bs, 64, &seekpoint.frameOffset)) { + break; + } + if (!drflac__read_uint16(&pFlac->bs, 16, &seekpoint.sampleCount)) { + break; + } + + // Note that the seekpoint sample is based on a single channel. The input sample (sampleIndex) is based on interleaving, thus + // we need to multiple the seekpoint's sample by the channel count. + if (seekpoint.firstSample*pFlac->channels > sampleIndex) { + break; + } + + closestSeekpoint = seekpoint; + seekpointsRemaining -= 1; + } + + // At this point we should have found the seekpoint closest to our sample. We need to seek to it using basically the same + // technique as we use with the brute force method. + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos + closestSeekpoint.frameOffset)) { + return DRFLAC_FALSE; + } + + drflac_uint64 runningSampleCount = closestSeekpoint.firstSample*pFlac->channels; + for (;;) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + // it never existed and keep iterating. + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + drflac_uint64 samplesToDecode = (size_t)(sampleIndex - runningSampleCount); // <-- Safe cast because the maximum number of samples in a frame is 65535. + if (samplesToDecode == 0) { + return DRFLAC_TRUE; + } + return drflac_read_s32(pFlac, samplesToDecode, NULL) != 0; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + drflac_uint8 capturePattern[4]; // Should be "OggS" + drflac_uint8 structureVersion; // Always 0. + drflac_uint8 headerType; + drflac_uint64 granulePosition; + drflac_uint32 serialNumber; + drflac_uint32 sequenceNumber; + drflac_uint32 checksum; + drflac_uint8 segmentCount; + drflac_uint8 segmentTable[255]; +} drflac_ogg_page_header; +#endif + +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + drflac_container container; + void* pUserData; + void* pUserDataMD; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint16 maxBlockSize; + drflac_uint64 runningFilePos; + drflac_bool32 hasStreamInfoBlock; + drflac_bool32 hasMetadataBlocks; + drflac_bs bs; // <-- A bit streamer is required for loading data during initialization. + drflac_frame_header firstFrameHeader; // <-- The header of the first frame that was read during relaxed initalization. Only set if there is no STREAMINFO block. + +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggSerial; + drflac_uint64 oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; + +static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (blockHeader & (0x01 << 31)) >> 31; + *blockType = (blockHeader & (0x7F << 24)) >> 24; + *blockSize = (blockHeader & 0xFFFFFF); +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + drflac_uint32 blockHeader; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DRFLAC_FALSE; + } + + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + // min/max block size. + drflac_uint32 blockSizes; + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DRFLAC_FALSE; + } + + // min/max frame size. + drflac_uint64 frameSizes = 0; + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DRFLAC_FALSE; + } + + // Sample rate, channels, bits per sample and total sample count. + drflac_uint64 importantProps; + if (onRead(pUserData, &importantProps, 8) != 8) { + return DRFLAC_FALSE; + } + + // MD5 + drflac_uint8 md5[16]; + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DRFLAC_FALSE; + } + + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + + pStreamInfo->minBlockSize = (blockSizes & 0xFFFF0000) >> 16; + pStreamInfo->maxBlockSize = blockSizes & 0x0000FFFF; + pStreamInfo->minFrameSize = (drflac_uint32)((frameSizes & (drflac_uint64)0xFFFFFF0000000000) >> 40); + pStreamInfo->maxFrameSize = (drflac_uint32)((frameSizes & (drflac_uint64)0x000000FFFFFF0000) >> 16); + pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (drflac_uint64)0xFFFFF00000000000) >> 44); + pStreamInfo->channels = (drflac_uint8 )((importantProps & (drflac_uint64)0x00000E0000000000) >> 41) + 1; + pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (drflac_uint64)0x000001F000000000) >> 36) + 1; + pStreamInfo->totalSampleCount = (importantProps & (drflac_uint64)0x0000000FFFFFFFFF) * pStreamInfo->channels; + drflac_copy_memory(pStreamInfo->md5, md5, sizeof(md5)); + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_and_decode_metadata(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + // We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that + // we'll be sitting on byte 42. + drflac_uint64 runningFilePos = 42; + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + + for (;;) { + drflac_uint8 isLastBlock = 0; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(pFlac->bs.onRead, pFlac->bs.pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + runningFilePos += 4; + + + drflac_metadata metadata; + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); + metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); + metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint); + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + + // Endian swap. + for (drflac_uint32 iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + pSeekpoint->firstSample = drflac__be2host_64(pSeekpoint->firstSample); + pSeekpoint->frameOffset = drflac__be2host_64(pSeekpoint->frameOffset); + pSeekpoint->sampleCount = drflac__be2host_16(pSeekpoint->sampleCount); + } + + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.vorbis_comment.comments = pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + drflac_copy_memory(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(drflac_uint64*)pRunningData); pRunningData += 4; + metadata.data.cuesheet.isCD = ((pRunningData[0] & 0x80) >> 7) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = (const drflac_uint8*)pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + const char* pRunningData = (const char*)pRawData; + metadata.data.picture.type = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.description = pRunningData; + metadata.data.picture.width = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32(*(drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (pFlac->onMeta) { + metadata.data.padding.unused = 0; + + // Padding doesn't have anything meaningful in it, so just skip over it, but make sure the caller is aware of it by firing the callback. + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; // An error occured while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. + } else { + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + } + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + // Invalid chunk. Just skip over this one. + if (pFlac->onMeta) { + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; // An error occured while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. + } + } + } + + default: + { + // It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we + // can at the very least report the chunk to the application and let it look at the raw data. + if (pFlac->onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (pFlac->bs.onRead(pFlac->bs.pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + pFlac->onMeta(pFlac->pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + } + + // If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. + if (pFlac->onMeta == NULL && blockSize > 0) { + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + + pFlac->seektablePos = seektablePos; + pFlac->seektableSize = seektableSize; + pFlac->firstFramePos = runningFilePos; + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + (void)onSeek; + + // Pre: The bit stream should be sitting just past the 4-byte id header. + + pInit->container = drflac_container_native; + + // The first metadata block should be the STREAMINFO block. + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + if (!relaxed) { + // We're opening in strict mode and the first block is not the STREAMINFO block. Error. + return DRFLAC_FALSE; + } else { + // Relaxed mode. To open from here we need to just find the first frame and set the sample rate, etc. to whatever is defined + // for that frame. + pInit->hasStreamInfoBlock = DRFLAC_FALSE; + pInit->hasMetadataBlocks = DRFLAC_FALSE; + + if (!drflac__read_next_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { + return DRFLAC_FALSE; // Couldn't find a frame. + } + + if (pInit->firstFrameHeader.bitsPerSample == 0) { + return DRFLAC_FALSE; // Failed to initialize because the first frame depends on the STREAMINFO block, which does not exist. + } + + pInit->sampleRate = pInit->firstFrameHeader.sampleRate; + pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); + pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; + pInit->maxBlockSize = 65535; // <-- See notes here: https://xiph.org/flac/format.html#metadata_block_streaminfo + return DRFLAC_TRUE; + } + } else { + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DRFLAC_FALSE; + } + + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; // Don't care about the min block size - only the max (used for determining the size of the memory allocation). + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + return DRFLAC_TRUE; + } +} + +#ifndef DR_FLAC_NO_OGG +#define DRFLAC_OGG_MAX_PAGE_SIZE 65307 +#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 // CRC-32 of "OggS". + +typedef enum +{ + drflac_ogg_recover_on_crc_mismatch, + drflac_ogg_fail_on_crc_mismatch +} drflac_ogg_crc_mismatch_recovery; + + +static drflac_uint32 drflac__crc32_table[] = { + 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, + 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, + 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, + 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, + 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, + 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, + 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, + 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, + 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, + 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, + 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, + 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, + 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, + 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, + 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, + 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, + 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, + 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, + 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, + 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, + 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, + 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, + 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, + 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, + 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, + 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, + 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, + 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, + 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, + 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, + 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, + 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, + 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, + 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, + 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, + 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, + 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, + 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, + 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, + 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, + 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, + 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, + 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, + 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, + 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, + 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, + 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, + 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, + 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, + 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, + 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, + 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, + 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, + 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, + 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, + 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, + 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, + 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, + 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, + 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, + 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, + 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, + 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, + 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L +}; + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) +{ +#ifndef DR_FLAC_NO_CRC + return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; +#else + (void)data; + return crc32; +#endif +} + +#if 0 +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) +{ + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); + return crc32; +} + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) +{ + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); + return crc32; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) +{ + // This can be optimized. + for (drflac_uint32 i = 0; i < dataSize; ++i) { + crc32 = drflac_crc32_byte(crc32, pData[i]); + } + return crc32; +} + + +static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + drflac_uint32 pageBodySize = 0; + for (int i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + + return pageBodySize; +} + +drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_assert(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); + + drflac_uint8 data[23]; + if (onRead(pUserData, data, 23) != 23) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 23; + + pHeader->structureVersion = data[0]; + pHeader->headerType = data[1]; + drflac_copy_memory(&pHeader->granulePosition, &data[ 2], 8); + drflac_copy_memory(&pHeader->serialNumber, &data[10], 4); + drflac_copy_memory(&pHeader->sequenceNumber, &data[14], 4); + drflac_copy_memory(&pHeader->checksum, &data[18], 4); + pHeader->segmentCount = data[22]; + + // Calculate the CRC. Note that for the calculation the checksum part of the page needs to be set to 0. + data[18] = 0; + data[19] = 0; + data[20] = 0; + data[21] = 0; + + drflac_uint32 i; + for (i = 0; i < 23; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); + } + + + if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += pHeader->segmentCount; + + for (i = 0; i < pHeader->segmentCount; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); + } + + return DRFLAC_SUCCESS; +} + +drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + *pBytesRead = 0; + + drflac_uint8 id[4]; + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 4; + + // We need to read byte-by-byte until we find the OggS capture pattern. + for (;;) { + if (drflac_ogg__is_capture_pattern(id)) { + *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + + drflac_result result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); + if (result == DRFLAC_SUCCESS) { + return DRFLAC_SUCCESS; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return result; + } + } + } else { + // The first 4 bytes did not equal the capture pattern. Read the next byte and try again. + id[0] = id[1]; + id[1] = id[2]; + id[2] = id[3]; + if (onRead(pUserData, &id[3], 1) != 1) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 1; + } + } +} + + +// The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works +// in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is architecured +// in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type +// dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from +// the physical Ogg bitstream are converted and delivered in native FLAC format. +typedef struct +{ + drflac_read_proc onRead; // The original onRead callback from drflac_open() and family. + drflac_seek_proc onSeek; // The original onSeek callback from drflac_open() and family. + void* pUserData; // The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. + drflac_uint64 currentBytePos; // The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. + drflac_uint64 firstBytePos; // The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. + drflac_uint32 serialNumber; // The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. + drflac_ogg_page_header bosPageHeader; // Used for seeking. + drflac_ogg_page_header currentPageHeader; + drflac_uint32 bytesRemainingInPage; + drflac_uint32 pageDataSize; + drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; +} drflac_oggbs; // oggbs = Ogg Bitstream + +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + + return bytesActuallyRead; +} + +static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return DRFLAC_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } else { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { // <-- Safe cast thanks to the loop above. + return DRFLAC_FALSE; + } + oggbs->currentBytePos += offset; + + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) +{ + drflac_ogg_page_header header; + for (;;) { + drflac_uint32 crc32 = 0; + drflac_uint32 bytesRead; + if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += bytesRead; + + drflac_uint32 pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { + continue; // Invalid page size. Assume it's corrupted and just move to the next page. + } + + if (header.serialNumber != oggbs->serialNumber) { + // It's not a FLAC page. Skip it. + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + continue; + } + + + // We need to read the entire page and then do a CRC check on it. If there's a CRC mismatch we need to skip this page. + if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { + return DRFLAC_FALSE; + } + oggbs->pageDataSize = pageBodySize; + +#ifndef DR_FLAC_NO_CRC + drflac_uint32 actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); + if (actualCRC32 != header.checksum) { + if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { + continue; // CRC mismatch. Skip this page. + } else { + // Even though we are failing on a CRC mismatch, we still want our stream to be in a good state. Therefore we + // go to the next valid page to ensure we're in a good state, but return false to let the caller know that the + // seek did not fully complete. + drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); + return DRFLAC_FALSE; + } + } +#endif + + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DRFLAC_TRUE; + } +} + +// Function below is unused at the moment, but I might be re-adding it later. +#if 0 +static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) +{ + drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + drflac_uint8 iSeg = 0; + drflac_uint32 iByte = 0; + while (iByte < bytesConsumedInPage) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); + return iSeg; +} + +static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + // The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. + for (;;) { + drflac_bool32 atEndOfPage = DRFLAC_FALSE; + + drflac_uint8 bytesRemainingInSeg; + drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + + drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DRFLAC_TRUE; + } + + break; + } + + bytesToEndOfPacketOrPage += segmentSize; + } + + // At this point we will have found either the packet or the end of the page. If were at the end of the page we'll + // want to load the next page and keep searching for the end of the packet. + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + + if (atEndOfPage) { + // We're potentially at the next packet, but we need to check the next page first to be sure because the packet may + // straddle pages. + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DRFLAC_FALSE; + } + + // If it's a fresh packet it most likely means we're at the next packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DRFLAC_TRUE; + } + } else { + // We're at the next packet. + return DRFLAC_TRUE; + } + } +} + +static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + // The bitstream should be sitting on the first byte just after the header of the frame. + + // What we're actually doing here is seeking to the start of the next packet. + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif + +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_assert(oggbs != NULL); + + drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; + + // Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. + size_t bytesRead = 0; + while (bytesRead < bytesToRead) { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); + bytesRead += bytesRemainingToRead; + oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); + bytesRead += oggbs->bytesRemainingInPage; + pRunningBufferOut += oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + break; // Failed to go to the next page. Might have simply hit the end of the stream. + } + } + + return bytesRead; +} + +static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_assert(oggbs != NULL); + drflac_assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + // Seeking is always forward which makes things a lot simpler. + if (origin == drflac_seek_origin_start) { + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + + + drflac_assert(origin == drflac_seek_origin_current); + + int bytesSeeked = 0; + while (bytesSeeked < offset) { + int bytesRemainingToSeek = offset - bytesSeeked; + drflac_assert(bytesRemainingToSeek >= 0); + + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + bytesSeeked += bytesRemainingToSeek; + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + + // If we get here it means some of the requested data is contained in the next pages. + if (oggbs->bytesRemainingInPage > 0) { + bytesSeeked += (int)oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + // Failed to go to the next page. We either hit the end of the stream or had a CRC mismatch. + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac_ogg__seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + + drflac_uint64 originalBytePos = oggbs->currentBytePos; // For recovery. + + // First seek to the first frame. + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos)) { + return DRFLAC_FALSE; + } + oggbs->bytesRemainingInPage = 0; + + drflac_uint64 runningGranulePosition = 0; + drflac_uint64 runningFrameBytePos = oggbs->currentBytePos; // <-- Points to the OggS identifier. + for (;;) { + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DRFLAC_FALSE; // Never did find that sample... + } + + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; + if (oggbs->currentPageHeader.granulePosition*pFlac->channels >= sampleIndex) { + break; // The sample is somewhere in the previous page. + } + + + // At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we + // disregard any pages that do not begin a fresh packet. + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { // <-- Is it a fresh page? + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + drflac_uint8 firstBytesInPage[2]; + firstBytesInPage[0] = oggbs->pageData[0]; + firstBytesInPage[1] = oggbs->pageData[1]; + + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { // <-- Does the page begin with a frame's sync code? + runningGranulePosition = oggbs->currentPageHeader.granulePosition*pFlac->channels; + } + + continue; + } + } + } + + + // We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the + // start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of + // a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until + // we find the one containing the target sample. + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + + // At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep + // looping over these frames until we find the one containing the sample we're after. + drflac_uint64 runningSampleCount = runningGranulePosition; + for (;;) { + // There are two ways to find the sample and seek past irrelevant frames: + // 1) Use the native FLAC decoder. + // 2) Use Ogg's framing system. + // + // Both of these options have their own pros and cons. Using the native FLAC decoder is slower because it needs to + // do a full decode of the frame. Using Ogg's framing system is faster, but more complicated and involves some code + // duplication for the decoding of frame headers. + // + // Another thing to consider is that using the Ogg framing system will perform direct seeking of the physical Ogg + // bitstream. This is important to consider because it means we cannot read data from the drflac_bs object using the + // standard drflac__*() APIs because that will read in extra data for it's own internal caching which in turn breaks + // the positioning of the read pointer of the physical Ogg bitstream. Therefore, anything that would normally be read + // using the native FLAC decoding APIs, such as drflac__read_next_frame_header(), need to be re-implemented so as to + // avoid the use of the drflac_bs object. + // + // Considering these issues, I have decided to use the slower native FLAC decoding method for the following reasons: + // 1) Seeking is already partially accellerated using Ogg's paging system in the code block above. + // 2) Seeking in an Ogg encapsulated FLAC stream is probably quite uncommon. + // 3) Simplicity. + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + drflac_uint64 sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + // The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + // it never existed and keep iterating. + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + // The frame is valid. We just need to skip over some samples to ensure it's sample-exact. + drflac_uint64 samplesToDecode = (size_t)(sampleIndex - runningSampleCount); // <-- Safe cast because the maximum number of samples in a frame is 65535. + if (samplesToDecode == 0) { + return DRFLAC_TRUE; + } + return drflac_read_s32(pFlac, samplesToDecode, NULL) != 0; // <-- If this fails, something bad has happened (it should never fail). + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } else { + // It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + // frame never existed and leave the running sample count untouched. + drflac_result result = drflac__seek_to_next_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; // CRC mismatch. Pretend this frame never existed. + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + +drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + // Pre: The bit stream should be sitting just past the 4-byte OggS capture pattern. + (void)relaxed; + + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + + // We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the + // stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if + // any match the FLAC specification. Important to keep in mind that the stream may be multiplexed. + drflac_ogg_page_header header; + + drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + drflac_uint32 bytesRead = 0; + if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + + for (;;) { + // Break if we're past the beginning of stream page. + if ((header.headerType & 0x02) == 0) { + return DRFLAC_FALSE; + } + + + // Check if it's a FLAC header. + int pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) { // 51 = the lacing value of the FLAC header packet. + // It could be a FLAC page... + drflac_uint32 bytesRemainingInPage = pageBodySize; + + drflac_uint8 packetType; + if (onRead(pUserData, &packetType, 1) != 1) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 1; + if (packetType == 0x7F) { + // Increasingly more likely to be a FLAC page... + drflac_uint8 sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { + // Almost certainly a FLAC page... + drflac_uint8 mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DRFLAC_FALSE; + } + + if (mappingVersion[0] != 1) { + return DRFLAC_FALSE; // Only supporting version 1.x of the Ogg mapping. + } + + // The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to + // be handling it in a generic way based on the serial number and packet types. + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + + // Expecting the native FLAC signature "fLaC". + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { + // The remaining data in the page should be the STREAMINFO block. + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DRFLAC_FALSE; // Invalid block type. First block must be the STREAMINFO block. + } + + drflac_streaminfo streaminfo; + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + // Success! + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; // Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } else { + // Failed to read STREAMINFO block. Aww, so close... + return DRFLAC_FALSE; + } + } else { + // Invalid file. + return DRFLAC_FALSE; + } + } else { + // Not a FLAC header. Skip it. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + // Not a FLAC header. Seek past the entire page and move on to the next. + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + + pInit->runningFilePos += pageBodySize; + + + // Read the header of the next page. + if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + } + + + // If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next + // packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialiation phase for Ogg is to create the + // Ogg bistream object. + pInit->hasMetadataBlocks = DRFLAC_TRUE; // <-- Always have at least VORBIS_COMMENT metadata block. + return DRFLAC_TRUE; +} +#endif + +drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DRFLAC_FALSE; + } + + drflac_zero_memory(pInit, sizeof(*pInit)); + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->container = container; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + + pInit->bs.onRead = onRead; + pInit->bs.onSeek = onSeek; + pInit->bs.pUserData = pUserData; + drflac__reset_cache(&pInit->bs); + + + // If the container is explicitly defined then we can try opening in relaxed mode. + drflac_bool32 relaxed = container != drflac_container_unknown; + + drflac_uint8 id[4]; + + // Skip over any ID3 tags. + for (;;) { + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_FALSE; // Ran out of data. + } + pInit->runningFilePos += 4; + + if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { + drflac_uint8 header[6]; + if (onRead(pUserData, header, 6) != 6) { + return DRFLAC_FALSE; // Ran out of data. + } + pInit->runningFilePos += 6; + + drflac_uint8 flags = header[1]; + drflac_uint32 headerSize; + drflac_copy_memory(&headerSize, header+2, 4); + headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); + if (flags & 0x10) { + headerSize += 10; + } + + if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; // Failed to seek past the tag. + } + pInit->runningFilePos += headerSize; + } else { + break; + } + } + + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + + // If we get here it means we likely don't have a header. Try opening in relaxed mode, if applicable. + if (relaxed) { + if (container == drflac_container_native) { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (container == drflac_container_ogg) { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + } + + // Unsupported container. + return DRFLAC_FALSE; +} + +void drflac__init_from_info(drflac* pFlac, drflac_init_info* pInit) +{ + drflac_assert(pFlac != NULL); + drflac_assert(pInit != NULL); + + drflac_zero_memory(pFlac, sizeof(*pFlac)); + pFlac->bs = pInit->bs; + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSize = pInit->maxBlockSize; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (drflac_uint8)pInit->channels; + pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; + pFlac->totalSampleCount = pInit->totalSampleCount; + pFlac->container = pInit->container; +} + +drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ +#ifndef DRFLAC_NO_CPUID + // CPU support first. + drflac__init_cpu_caps(); +#endif + + drflac_init_info init; + if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { + return NULL; + } + + // The size of the allocation for the drflac object needs to be large enough to fit the following: + // 1) The main members of the drflac structure + // 2) A block of memory large enough to store the decoded samples of the largest frame in the stream + // 3) If the container is Ogg, a drflac_oggbs object + // + // The complicated part of the allocation is making sure there's enough room the decoded samples, taking into consideration + // the different SIMD instruction sets. + drflac_uint32 allocationSize = sizeof(drflac); + + // The allocation size for decoded frames depends on the number of 32-bit integers that fit inside the largest SIMD vector + // we are supporting. + drflac_uint32 wholeSIMDVectorCountPerChannel; + if ((init.maxBlockSize % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { + wholeSIMDVectorCountPerChannel = (init.maxBlockSize / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); + } else { + wholeSIMDVectorCountPerChannel = (init.maxBlockSize / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; + } + + drflac_uint32 decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; + + allocationSize += decodedSamplesAllocationSize; + allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; // Allocate extra bytes to ensure we have enough for alignment. + +#ifndef DR_FLAC_NO_OGG + // There's additional data required for Ogg streams. + if (init.container == drflac_container_ogg) { + allocationSize += sizeof(drflac_oggbs); + } +#endif + + drflac* pFlac = (drflac*)DRFLAC_MALLOC(allocationSize); + drflac__init_from_info(pFlac, &init); + pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* oggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); + oggbs->onRead = onRead; + oggbs->onSeek = onSeek; + oggbs->pUserData = pUserData; + oggbs->currentBytePos = init.oggFirstBytePos; + oggbs->firstBytePos = init.oggFirstBytePos; + oggbs->serialNumber = init.oggSerial; + oggbs->bosPageHeader = init.oggBosHeader; + oggbs->bytesRemainingInPage = 0; + + // The Ogg bistream needs to be layered on top of the original bitstream. + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)oggbs; + pFlac->_oggbs = (void*)oggbs; + } +#endif + + // Decode metadata before returning. + if (init.hasMetadataBlocks) { + if (!drflac__read_and_decode_metadata(pFlac)) { + DRFLAC_FREE(pFlac); + return NULL; + } + } + + // If we get here, but don't have a STREAMINFO block, it means we've opened the stream in relaxed mode and need to decode + // the first frame. + if (!init.hasStreamInfoBlock) { + pFlac->currentFrame.header = init.firstFrameHeader; + do + { + drflac_result result = drflac__decode_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + break; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + if (!drflac__read_next_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + DRFLAC_FREE(pFlac); + return NULL; + } + continue; + } else { + DRFLAC_FREE(pFlac); + return NULL; + } + } + } while (1); + } + + return pFlac; +} + + + +#ifndef DR_FLAC_NO_STDIO +typedef void* drflac_file; + +#if defined(DR_FLAC_NO_WIN32_IO) || !defined(_WIN32) +#include + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +static drflac_file drflac__open_file_handle(const char* filename) +{ + FILE* pFile; +#ifdef _MSC_VER + if (fopen_s(&pFile, filename, "rb") != 0) { + return NULL; + } +#else + pFile = fopen(filename, "rb"); + if (pFile == NULL) { + return NULL; + } +#endif + + return (drflac_file)pFile; +} + +static void drflac__close_file_handle(drflac_file file) +{ + fclose((FILE*)file); +} +#else +#include + +// This doesn't seem to be defined for VC6. +#ifndef INVALID_SET_FILE_POINTER +#define INVALID_SET_FILE_POINTER ((DWORD)-1) +#endif + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_assert(bytesToRead < 0xFFFFFFFF); // dr_flac will never request huge amounts of data at a time. This is a safe assertion. + + DWORD bytesRead; + ReadFile((HANDLE)pUserData, bufferOut, (DWORD)bytesToRead, &bytesRead, NULL); + + return (size_t)bytesRead; +} + +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + return SetFilePointer((HANDLE)pUserData, offset, NULL, (origin == drflac_seek_origin_current) ? FILE_CURRENT : FILE_BEGIN) != INVALID_SET_FILE_POINTER; +} + +static drflac_file drflac__open_file_handle(const char* filename) +{ + HANDLE hFile = CreateFileA(filename, FILE_GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); + if (hFile == INVALID_HANDLE_VALUE) { + return NULL; + } + + return (drflac_file)hFile; +} + +static void drflac__close_file_handle(drflac_file file) +{ + CloseHandle((HANDLE)file); +} +#endif + + +drflac* drflac_open_file(const char* filename) +{ + drflac_file file = drflac__open_file_handle(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)file); + if (pFlac == NULL) { + drflac__close_file_handle(file); + return NULL; + } + + return pFlac; +} + +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData) +{ + drflac_file file = drflac__open_file_handle(filename); + if (file == NULL) { + return NULL; + } + + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)file, pUserData); + if (pFlac == NULL) { + drflac__close_file_handle(file); + return pFlac; + } + + return pFlac; +} +#endif //DR_FLAC_NO_STDIO + +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + drflac_assert(memoryStream != NULL); + drflac_assert(memoryStream->dataSize >= memoryStream->currentReadPos); + + size_t bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + drflac_copy_memory(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + drflac_assert(memoryStream != NULL); + drflac_assert(offset > 0 || (offset == 0 && origin == drflac_seek_origin_start)); + + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + memoryStream->currentReadPos = memoryStream->dataSize; // Trying to seek too far forward. + } + } else { + if ((drflac_uint32)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + memoryStream->currentReadPos = memoryStream->dataSize; // Trying to seek too far forward. + } + } + + return DRFLAC_TRUE; +} + +drflac* drflac_open_memory(const void* data, size_t dataSize) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData) +{ + drflac__memory_stream memoryStream; + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + drflac* pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + // This is an awful hack... +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + + + +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData); +} + +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData); +} + +void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } + +#ifndef DR_FLAC_NO_STDIO + // If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file() + // was used by looking at the callbacks. + if (pFlac->bs.onRead == drflac__on_read_stdio) { + drflac__close_file_handle((drflac_file)pFlac->bs.pUserData); + } + +#ifndef DR_FLAC_NO_OGG + // Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. + if (pFlac->container == drflac_container_ogg) { + drflac_assert(pFlac->bs.onRead == drflac__on_read_ogg); + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + if (oggbs->onRead == drflac__on_read_stdio) { + drflac__close_file_handle((drflac_file)oggbs->pUserData); + } + } +#endif +#endif + + DRFLAC_FREE(pFlac); +} + +drflac_uint64 drflac__read_s32__misaligned(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + // We should never be calling this when the number of samples to read is >= the sample count. + drflac_assert(samplesToRead < channelCount); + drflac_assert(pFlac->currentFrame.samplesRemaining > 0 && samplesToRead <= pFlac->currentFrame.samplesRemaining); + + + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + drflac_uint64 channelIndex = samplesReadFromFrameSoFar % channelCount; + + drflac_uint64 nextSampleInFrame = samplesReadFromFrameSoFar / channelCount; + + int decodedSample = 0; + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + if (channelIndex == 0) { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } else { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + int left = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame]; + decodedSample = left - side; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + if (channelIndex == 0) { + int side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + int right = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame]; + decodedSample = side + right; + } else { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + int mid; + int side; + if (channelIndex == 0) { + mid = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + side = pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame]; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid + side) >> 1; + } else { + mid = pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame]; + side = pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame]; + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid - side) >> 1; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + decodedSample = pFlac->currentFrame.subframes[channelIndex].pDecodedSamples[nextSampleInFrame]; + } break; + } + + + decodedSample <<= ((32 - pFlac->bitsPerSample) + pFlac->currentFrame.subframes[channelIndex].wastedBitsPerSample); + + if (bufferOut) { + *bufferOut++ = decodedSample; + } + + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + + return samplesRead; +} + +drflac_uint64 drflac__seek_forward_by_samples(drflac* pFlac, drflac_uint64 samplesToRead) +{ + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } else { + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + } + + return samplesRead; +} + +drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + // Note that is allowed to be null, in which case this will be treated as something like a seek. + if (pFlac == NULL || samplesToRead == 0) { + return 0; + } + + if (bufferOut == NULL) { + return drflac__seek_forward_by_samples(pFlac, samplesToRead); + } + + + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + // If we've run out of samples in this frame, go to the next. + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_frame(pFlac)) { + break; // Couldn't read the next frame, so just break from the loop and return. + } + } else { + // Here is where we grab the samples and interleave them. + + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + + drflac_uint64 misalignedSampleCount = samplesReadFromFrameSoFar % channelCount; + if (misalignedSampleCount > 0) { + drflac_uint64 misalignedSamplesRead = drflac__read_s32__misaligned(pFlac, misalignedSampleCount, bufferOut); + samplesRead += misalignedSamplesRead; + samplesReadFromFrameSoFar += misalignedSamplesRead; + bufferOut += misalignedSamplesRead; + samplesToRead -= misalignedSamplesRead; + } + + + drflac_uint64 alignedSampleCountPerChannel = samplesToRead / channelCount; + if (alignedSampleCountPerChannel > pFlac->currentFrame.samplesRemaining / channelCount) { + alignedSampleCountPerChannel = pFlac->currentFrame.samplesRemaining / channelCount; + } + + drflac_uint64 firstAlignedSampleInFrame = samplesReadFromFrameSoFar / channelCount; + unsigned int unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int left = pDecodedSamples0[i]; + int side = pDecodedSamples1[i]; + int right = left - side; + + bufferOut[i*2+0] = left << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = right << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = pDecodedSamples0[i]; + int right = pDecodedSamples1[i]; + int left = right + side; + + bufferOut[i*2+0] = left << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = right << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = pDecodedSamples1[i]; + int mid = (((drflac_uint32)pDecodedSamples0[i]) << 1) | (side & 0x01); + + bufferOut[i*2+0] = ((mid + side) >> 1) << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = ((mid - side) >> 1) << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + if (pFlac->currentFrame.header.channelAssignment == 1) // 1 = Stereo + { + // Stereo optimized inner loop unroll. + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + bufferOut[i*2+0] = pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + bufferOut[i*2+1] = pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + } + } + else + { + // Generic interleaving. + for (drflac_uint64 i = 0; i < alignedSampleCountPerChannel; ++i) { + for (unsigned int j = 0; j < channelCount; ++j) { + bufferOut[(i*channelCount)+j] = (pFlac->currentFrame.subframes[j].pDecodedSamples[firstAlignedSampleInFrame + i]) << (unusedBitsPerSample + pFlac->currentFrame.subframes[j].wastedBitsPerSample); + } + } + } + } break; + } + + drflac_uint64 alignedSamplesRead = alignedSampleCountPerChannel * channelCount; + samplesRead += alignedSamplesRead; + samplesReadFromFrameSoFar += alignedSamplesRead; + bufferOut += alignedSamplesRead; + samplesToRead -= alignedSamplesRead; + pFlac->currentFrame.samplesRemaining -= (unsigned int)alignedSamplesRead; + + + + // At this point we may still have some excess samples left to read. + if (samplesToRead > 0 && pFlac->currentFrame.samplesRemaining > 0) { + drflac_uint64 excessSamplesRead = 0; + if (samplesToRead < pFlac->currentFrame.samplesRemaining) { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, samplesToRead, bufferOut); + } else { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, pFlac->currentFrame.samplesRemaining, bufferOut); + } + + samplesRead += excessSamplesRead; + samplesReadFromFrameSoFar += excessSamplesRead; + bufferOut += excessSamplesRead; + samplesToRead -= excessSamplesRead; + } + } + } + + return samplesRead; +} + +drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut) +{ + // This reads samples in 2 passes and can probably be optimized. + drflac_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0) { + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; // Reached the end. + } + + // s32 -> s16 + for (drflac_uint64 i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (drflac_int16)(samples32[i] >> 16); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + + return totalSamplesRead; +} + +drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut) +{ + // This reads samples in 2 passes and can probably be optimized. + drflac_uint64 totalSamplesRead = 0; + + while (samplesToRead > 0) { + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; // Reached the end. + } + + // s32 -> f32 + for (drflac_uint64 i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (float)(samples32[i] / 2147483648.0); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + + return totalSamplesRead; +} + +drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + + // If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present + // when the decoder was opened. + if (pFlac->firstFramePos == 0) { + return DRFLAC_FALSE; + } + + if (sampleIndex == 0) { + return drflac__seek_to_first_frame(pFlac); + } + + // Clamp the sample to the end. + if (sampleIndex >= pFlac->totalSampleCount) { + sampleIndex = pFlac->totalSampleCount - 1; + } + + + // Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + // we'll instead use Ogg's natural seeking facility. +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + return drflac_ogg__seek_to_sample(pFlac, sampleIndex); + } + else +#endif + { + // First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. + if (!drflac__seek_to_sample__seek_table(pFlac, sampleIndex)) { + return drflac__seek_to_sample__brute_force(pFlac, sampleIndex); + } + } + + + return DRFLAC_TRUE; +} + + + +/* High Level APIs */ + +/* I couldn't figure out where SIZE_MAX was defined for VC6. If anybody knows, let me know. */ +#if defined(_MSC_VER) && _MSC_VER <= 1200 +#ifdef DRFLAC_64BIT +#define SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) +#else +#define SIZE_MAX 0xFFFFFFFF +#endif +#endif + +/* Using a macro as the definition of the drflac__full_decode_and_close_*() API family. Sue me. */ +#define DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(extension, type) \ +static type* drflac__full_decode_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut)\ +{ \ + drflac_assert(pFlac != NULL); \ + \ + type* pSampleData = NULL; \ + drflac_uint64 totalSampleCount = pFlac->totalSampleCount; \ + \ + if (totalSampleCount == 0) { \ + type buffer[4096]; \ + \ + size_t sampleDataBufferSize = sizeof(buffer); \ + pSampleData = (type*)DRFLAC_MALLOC(sampleDataBufferSize); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + drflac_uint64 samplesRead; \ + while ((samplesRead = (drflac_uint64)drflac_read_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0]), buffer)) > 0) { \ + if (((totalSampleCount + samplesRead) * sizeof(type)) > sampleDataBufferSize) { \ + sampleDataBufferSize *= 2; \ + type* pNewSampleData = (type*)DRFLAC_REALLOC(pSampleData, sampleDataBufferSize); \ + if (pNewSampleData == NULL) { \ + DRFLAC_FREE(pSampleData); \ + goto on_error; \ + } \ + \ + pSampleData = pNewSampleData; \ + } \ + \ + drflac_copy_memory(pSampleData + totalSampleCount, buffer, (size_t)(samplesRead*sizeof(type))); \ + totalSampleCount += samplesRead; \ + } \ + \ + /* At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to \ + protect those ears from random noise! */ \ + drflac_zero_memory(pSampleData + totalSampleCount, (size_t)(sampleDataBufferSize - totalSampleCount*sizeof(type))); \ + } else { \ + drflac_uint64 dataSize = totalSampleCount * sizeof(type); \ + if (dataSize > SIZE_MAX) { \ + goto on_error; /* The decoded data is too big. */ \ + } \ + \ + pSampleData = (type*)DRFLAC_MALLOC((size_t)dataSize); /* <-- Safe cast as per the check above. */ \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + totalSampleCount = drflac_read_##extension(pFlac, pFlac->totalSampleCount, pSampleData); \ + } \ + \ + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ + if (channelsOut) *channelsOut = pFlac->channels; \ + if (totalSampleCountOut) *totalSampleCountOut = totalSampleCount; \ + \ + drflac_close(pFlac); \ + return pSampleData; \ + \ +on_error: \ + drflac_close(pFlac); \ + return NULL; \ +} + +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(s32, drflac_int32) +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(s16, drflac_int16) +DRFLAC_DEFINE_FULL_DECODE_AND_CLOSE(f32, float) + +drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + /* Safety. */ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + /* Safety. */ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + /* Safety. */ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} + +#ifndef DR_FLAC_NO_STDIO +drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} +#endif + +drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s32(pFlac, channels, sampleRate, totalSampleCount); +} + +drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_s16(pFlac, channels, sampleRate, totalSampleCount); +} + +float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount) +{ + if (sampleRate) *sampleRate = 0; + if (channels) *channels = 0; + if (totalSampleCount) *totalSampleCount = 0; + + drflac* pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_decode_and_close_f32(pFlac, channels, sampleRate, totalSampleCount); +} + +void drflac_free(void* pSampleDataReturnedByOpenAndDecode) +{ + DRFLAC_FREE(pSampleDataReturnedByOpenAndDecode); +} + + + + +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const char* pComments) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = commentCount; + pIter->pRunningData = pComments; +} + +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) +{ + /* Safety. */ + if (pCommentLengthOut) *pCommentLengthOut = 0; + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + + drflac_uint32 length = drflac__le2host_32(*(drflac_uint32*)pIter->pRunningData); + pIter->pRunningData += 4; + + const char* pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + + if (pCommentLengthOut) *pCommentLengthOut = length; + return pComment; +} +#endif /* DR_FLAC_IMPLEMENTATION */ + +/* +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or +distribute this software, either in source code form or as a compiled +binary, for any purpose, commercial or non-commercial, and by any +means. + +In jurisdictions that recognize copyright laws, the author or authors +of this software dedicate any and all copyright interest in the +software to the public domain. We make this dedication for the benefit +of the public at large and to the detriment of our heirs and +successors. We intend this dedication to be an overt act of +relinquishment in perpetuity of all present and future rights to this +software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR +OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to +*/ diff --git a/libretro-common/audio/audio_mixer.c b/libretro-common/audio/audio_mixer.c index b5bc82d906..b5f83f2e5c 100644 --- a/libretro-common/audio/audio_mixer.c +++ b/libretro-common/audio/audio_mixer.c @@ -585,7 +585,7 @@ error: } #endif -#ifdef HAV_DR_FLAC +#ifdef HAVE_DR_FLAC static bool audio_mixer_play_flac( audio_mixer_sound_t* sound, audio_mixer_voice_t* voice, diff --git a/libretro-common/include/audio/audio_mixer.h b/libretro-common/include/audio/audio_mixer.h index fa21b02e21..1541c431b7 100644 --- a/libretro-common/include/audio/audio_mixer.h +++ b/libretro-common/include/audio/audio_mixer.h @@ -61,6 +61,7 @@ void audio_mixer_done(void); audio_mixer_sound_t* audio_mixer_load_wav(void *buffer, int32_t size); audio_mixer_sound_t* audio_mixer_load_ogg(void *buffer, int32_t size); +audio_mixer_sound_t* audio_mixer_load_flac(void *buffer, int32_t size); audio_mixer_sound_t* audio_mixer_load_mod(void *buffer, int32_t size); audio_mixer_sound_t* audio_mixer_load_flac(void *buffer, int32_t size);