CRLF -> LF

This commit is contained in:
misson20000 2018-09-15 03:27:05 -07:00
parent bde5905eba
commit fa76a3cb60
5 changed files with 2133 additions and 2133 deletions

View File

@ -1,358 +1,358 @@
/* RetroArch - A frontend for libretro. /* RetroArch - A frontend for libretro.
* Copyright (C) 2018 - misson2000 * Copyright (C) 2018 - misson2000
* Copyright (C) 2018 - m4xw * Copyright (C) 2018 - m4xw
* Copyright (C) 2018 - lifajucejo * Copyright (C) 2018 - lifajucejo
* *
* RetroArch is free software: you can redistribute it and/or modify it under the terms * RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found- * of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version. * ation, either version 3 of the License, or (at your option) any later version.
* *
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details. * PURPOSE. See the GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License along with RetroArch. * You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see <http://www.gnu.org/licenses/>. * If not, see <http://www.gnu.org/licenses/>.
*/ */
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <malloc.h> #include <malloc.h>
#include <stdint.h> #include <stdint.h>
#include <sys/unistd.h> #include <sys/unistd.h>
#include <switch.h> #include <switch.h>
#include <queues/fifo_queue.h> #include <queues/fifo_queue.h>
#include "../audio_driver.h" #include "../audio_driver.h"
#include "../../verbosity.h" #include "../../verbosity.h"
#include "../../tasks/tasks_internal.h" #include "../../tasks/tasks_internal.h"
#define THREAD_STACK_SIZE (1024 * 8) #define THREAD_STACK_SIZE (1024 * 8)
#define AUDIO_THREAD_CPU 2 #define AUDIO_THREAD_CPU 2
#define CHANNELCOUNT 2 #define CHANNELCOUNT 2
#define BYTESPERSAMPLE sizeof(uint16_t) #define BYTESPERSAMPLE sizeof(uint16_t)
#define SAMPLE_SIZE (CHANNELCOUNT * BYTESPERSAMPLE) #define SAMPLE_SIZE (CHANNELCOUNT * BYTESPERSAMPLE)
#define AUDIO_BUFFER_COUNT 2 #define AUDIO_BUFFER_COUNT 2
static inline void lockMutex(Mutex* mtx) static inline void lockMutex(Mutex* mtx)
{ {
mutexLock(mtx); mutexLock(mtx);
} }
typedef struct typedef struct
{ {
fifo_buffer_t* fifo; fifo_buffer_t* fifo;
Mutex fifoLock; Mutex fifoLock;
CondVar cond; CondVar cond;
Mutex condLock; Mutex condLock;
size_t fifoSize; size_t fifoSize;
volatile bool running; volatile bool running;
bool nonblocking; bool nonblocking;
bool is_paused; bool is_paused;
AudioOutBuffer buffer[AUDIO_BUFFER_COUNT]; AudioOutBuffer buffer[AUDIO_BUFFER_COUNT];
Thread thread; Thread thread;
unsigned latency; unsigned latency;
uint32_t sampleRate; uint32_t sampleRate;
} switch_thread_audio_t; } switch_thread_audio_t;
static void mainLoop(void* data) static void mainLoop(void* data)
{ {
switch_thread_audio_t* swa = (switch_thread_audio_t*)data; switch_thread_audio_t* swa = (switch_thread_audio_t*)data;
if (!swa) if (!swa)
return; return;
RARCH_LOG("[Audio]: start mainLoop cpu %u tid %u\n", svcGetCurrentProcessorNumber(), swa->thread.handle); RARCH_LOG("[Audio]: start mainLoop cpu %u tid %u\n", svcGetCurrentProcessorNumber(), swa->thread.handle);
for (int i = 0; i < AUDIO_BUFFER_COUNT; i++) for (int i = 0; i < AUDIO_BUFFER_COUNT; i++)
{ {
swa->buffer[i].next = NULL; /* Unused */ swa->buffer[i].next = NULL; /* Unused */
swa->buffer[i].buffer_size = swa->fifoSize; swa->buffer[i].buffer_size = swa->fifoSize;
swa->buffer[i].buffer = memalign(0x1000, swa->buffer[i].buffer_size); swa->buffer[i].buffer = memalign(0x1000, swa->buffer[i].buffer_size);
swa->buffer[i].data_size = swa->buffer[i].buffer_size; swa->buffer[i].data_size = swa->buffer[i].buffer_size;
swa->buffer[i].data_offset = 0; swa->buffer[i].data_offset = 0;
memset(swa->buffer[i].buffer, 0, swa->buffer[i].buffer_size); memset(swa->buffer[i].buffer, 0, swa->buffer[i].buffer_size);
audoutAppendAudioOutBuffer(&swa->buffer[i]); audoutAppendAudioOutBuffer(&swa->buffer[i]);
} }
AudioOutBuffer* released_out_buffer = NULL; AudioOutBuffer* released_out_buffer = NULL;
u32 released_out_count; u32 released_out_count;
Result rc; Result rc;
while (swa->running) while (swa->running)
{ {
if (!released_out_buffer) if (!released_out_buffer)
{ {
rc = audoutWaitPlayFinish(&released_out_buffer, &released_out_count, U64_MAX); rc = audoutWaitPlayFinish(&released_out_buffer, &released_out_count, U64_MAX);
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
swa->running = false; swa->running = false;
RARCH_LOG("[Audio]: audoutGetReleasedAudioOutBuffer failed: %d\n", (int)rc); RARCH_LOG("[Audio]: audoutGetReleasedAudioOutBuffer failed: %d\n", (int)rc);
break; break;
} }
released_out_buffer->data_size = 0; released_out_buffer->data_size = 0;
} }
size_t bufAvail = released_out_buffer->buffer_size - released_out_buffer->data_size; size_t bufAvail = released_out_buffer->buffer_size - released_out_buffer->data_size;
lockMutex(&swa->fifoLock); lockMutex(&swa->fifoLock);
size_t avail = fifo_read_avail(swa->fifo); size_t avail = fifo_read_avail(swa->fifo);
size_t to_write = MIN(avail, bufAvail); size_t to_write = MIN(avail, bufAvail);
if (to_write > 0) if (to_write > 0)
fifo_read(swa->fifo, ((u8*)released_out_buffer->buffer) + released_out_buffer->data_size, to_write); fifo_read(swa->fifo, ((u8*)released_out_buffer->buffer) + released_out_buffer->data_size, to_write);
mutexUnlock(&swa->fifoLock); mutexUnlock(&swa->fifoLock);
condvarWakeAll(&swa->cond); condvarWakeAll(&swa->cond);
released_out_buffer->data_size += to_write; released_out_buffer->data_size += to_write;
if (released_out_buffer->data_size >= released_out_buffer->buffer_size / 2) if (released_out_buffer->data_size >= released_out_buffer->buffer_size / 2)
{ {
rc = audoutAppendAudioOutBuffer(released_out_buffer); rc = audoutAppendAudioOutBuffer(released_out_buffer);
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
RARCH_LOG("[Audio]: audoutAppendAudioOutBuffer failed: %d\n", (int)rc); RARCH_LOG("[Audio]: audoutAppendAudioOutBuffer failed: %d\n", (int)rc);
} }
released_out_buffer = NULL; released_out_buffer = NULL;
} }
else else
svcSleepThread(16000000); /* 16ms */ svcSleepThread(16000000); /* 16ms */
} }
} }
static void *switch_thread_audio_init(const char *device, unsigned rate, unsigned latency, unsigned block_frames, unsigned *new_rate) static void *switch_thread_audio_init(const char *device, unsigned rate, unsigned latency, unsigned block_frames, unsigned *new_rate)
{ {
(void)device; (void)device;
switch_thread_audio_t *swa = (switch_thread_audio_t *)calloc(1, sizeof(switch_thread_audio_t)); switch_thread_audio_t *swa = (switch_thread_audio_t *)calloc(1, sizeof(switch_thread_audio_t));
if (!swa) if (!swa)
return NULL; return NULL;
swa->running = true; swa->running = true;
swa->nonblocking = true; swa->nonblocking = true;
swa->is_paused = true; swa->is_paused = true;
swa->latency = MAX(latency, 8); swa->latency = MAX(latency, 8);
Result rc = audoutInitialize(); Result rc = audoutInitialize();
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
RARCH_LOG("[Audio]: audio init failed %d\n", (int)rc); RARCH_LOG("[Audio]: audio init failed %d\n", (int)rc);
return NULL; return NULL;
} }
rc = audoutStartAudioOut(); rc = audoutStartAudioOut();
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
RARCH_LOG("[Audio]: audio start init failed: %d\n", (int)rc); RARCH_LOG("[Audio]: audio start init failed: %d\n", (int)rc);
return NULL; return NULL;
} }
swa->sampleRate = audoutGetSampleRate(); swa->sampleRate = audoutGetSampleRate();
*new_rate = swa->sampleRate; *new_rate = swa->sampleRate;
mutexInit(&swa->fifoLock); mutexInit(&swa->fifoLock);
swa->fifoSize = (swa->sampleRate * SAMPLE_SIZE * swa->latency) / 1000; swa->fifoSize = (swa->sampleRate * SAMPLE_SIZE * swa->latency) / 1000;
swa->fifo = fifo_new(swa->fifoSize); swa->fifo = fifo_new(swa->fifoSize);
condvarInit(&swa->cond); condvarInit(&swa->cond);
RARCH_LOG("[Audio]: switch_thread_audio_init device %s requested rate %hu rate %hu latency %hu block_frames %hu fifoSize %lu\n", RARCH_LOG("[Audio]: switch_thread_audio_init device %s requested rate %hu rate %hu latency %hu block_frames %hu fifoSize %lu\n",
device, rate, swa->sampleRate, swa->latency, block_frames, swa->fifoSize); device, rate, swa->sampleRate, swa->latency, block_frames, swa->fifoSize);
u32 prio; u32 prio;
svcGetThreadPriority(&prio, CUR_THREAD_HANDLE); svcGetThreadPriority(&prio, CUR_THREAD_HANDLE);
rc = threadCreate(&swa->thread, &mainLoop, (void*)swa, THREAD_STACK_SIZE, prio + 1, AUDIO_THREAD_CPU); rc = threadCreate(&swa->thread, &mainLoop, (void*)swa, THREAD_STACK_SIZE, prio + 1, AUDIO_THREAD_CPU);
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
RARCH_LOG("[Audio]: thread creation failed create %u\n", swa->thread.handle); RARCH_LOG("[Audio]: thread creation failed create %u\n", swa->thread.handle);
swa->running = false; swa->running = false;
return NULL; return NULL;
} }
if (R_FAILED(threadStart(&swa->thread))) if (R_FAILED(threadStart(&swa->thread)))
{ {
RARCH_LOG("[Audio]: thread creation failed start %u\n", swa->thread.handle); RARCH_LOG("[Audio]: thread creation failed start %u\n", swa->thread.handle);
threadClose(&swa->thread); threadClose(&swa->thread);
swa->running = false; swa->running = false;
return NULL; return NULL;
} }
return swa; return swa;
} }
static bool switch_thread_audio_start(void *data, bool is_shutdown) static bool switch_thread_audio_start(void *data, bool is_shutdown)
{ {
/* RARCH_LOG("[Audio]: switch_thread_audio_start\n"); */ /* RARCH_LOG("[Audio]: switch_thread_audio_start\n"); */
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (!swa) if (!swa)
return false; return false;
swa->is_paused = false; swa->is_paused = false;
return true; return true;
} }
static bool switch_thread_audio_stop(void *data) static bool switch_thread_audio_stop(void *data)
{ {
switch_thread_audio_t* swa = (switch_thread_audio_t*)data; switch_thread_audio_t* swa = (switch_thread_audio_t*)data;
if (!swa) if (!swa)
return false; return false;
swa->is_paused = true; swa->is_paused = true;
return true; return true;
} }
static void switch_thread_audio_free(void *data) static void switch_thread_audio_free(void *data)
{ {
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (!swa) if (!swa)
return; return;
if (swa->running) if (swa->running)
{ {
swa->running = false; swa->running = false;
threadWaitForExit(&swa->thread); threadWaitForExit(&swa->thread);
threadClose(&swa->thread); threadClose(&swa->thread);
} }
audoutStopAudioOut(); audoutStopAudioOut();
audoutExit(); audoutExit();
if (swa->fifo) if (swa->fifo)
{ {
fifo_free(swa->fifo); fifo_free(swa->fifo);
swa->fifo = NULL; swa->fifo = NULL;
} }
for (int i = 0; i < AUDIO_BUFFER_COUNT; i++) for (int i = 0; i < AUDIO_BUFFER_COUNT; i++)
free(swa->buffer[i].buffer); free(swa->buffer[i].buffer);
free(swa); free(swa);
swa = NULL; swa = NULL;
} }
static ssize_t switch_thread_audio_write(void *data, const void *buf, size_t size) static ssize_t switch_thread_audio_write(void *data, const void *buf, size_t size)
{ {
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (!swa || !swa->running) if (!swa || !swa->running)
return 0; return 0;
size_t avail; size_t avail;
size_t written; size_t written;
if (swa->nonblocking) if (swa->nonblocking)
{ {
lockMutex(&swa->fifoLock); lockMutex(&swa->fifoLock);
avail = fifo_write_avail(swa->fifo); avail = fifo_write_avail(swa->fifo);
written = MIN(avail, size); written = MIN(avail, size);
if (written > 0) if (written > 0)
{ {
fifo_write(swa->fifo, buf, written); fifo_write(swa->fifo, buf, written);
} }
mutexUnlock(&swa->fifoLock); mutexUnlock(&swa->fifoLock);
} }
else else
{ {
written = 0; written = 0;
while (written < size && swa->running) while (written < size && swa->running)
{ {
lockMutex(&swa->fifoLock); lockMutex(&swa->fifoLock);
avail = fifo_write_avail(swa->fifo); avail = fifo_write_avail(swa->fifo);
if (avail == 0) if (avail == 0)
{ {
mutexUnlock(&swa->fifoLock); mutexUnlock(&swa->fifoLock);
lockMutex(&swa->condLock); lockMutex(&swa->condLock);
if (swa->running) if (swa->running)
condvarWait(&swa->cond, &swa->condLock); condvarWait(&swa->cond, &swa->condLock);
mutexUnlock(&swa->condLock); mutexUnlock(&swa->condLock);
} }
else else
{ {
size_t write_amt = MIN(size - written, avail); size_t write_amt = MIN(size - written, avail);
fifo_write(swa->fifo, (const char*)buf + written, write_amt); fifo_write(swa->fifo, (const char*)buf + written, write_amt);
mutexUnlock(&swa->fifoLock); mutexUnlock(&swa->fifoLock);
written += write_amt; written += write_amt;
} }
} }
} }
return written; return written;
} }
static bool switch_thread_audio_alive(void *data) static bool switch_thread_audio_alive(void *data)
{ {
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (!swa) if (!swa)
return false; return false;
return !swa->is_paused; return !swa->is_paused;
} }
static void switch_thread_audio_set_nonblock_state(void *data, bool state) static void switch_thread_audio_set_nonblock_state(void *data, bool state)
{ {
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (swa) if (swa)
swa->nonblocking = state; swa->nonblocking = state;
} }
static bool switch_thread_audio_use_float(void *data) static bool switch_thread_audio_use_float(void *data)
{ {
(void)data; (void)data;
return false; return false;
} }
static size_t switch_thread_audio_write_avail(void *data) static size_t switch_thread_audio_write_avail(void *data)
{ {
switch_thread_audio_t* swa = (switch_thread_audio_t*)data; switch_thread_audio_t* swa = (switch_thread_audio_t*)data;
lockMutex(&swa->fifoLock); lockMutex(&swa->fifoLock);
size_t val = fifo_write_avail(swa->fifo); size_t val = fifo_write_avail(swa->fifo);
mutexUnlock(&swa->fifoLock); mutexUnlock(&swa->fifoLock);
return val; return val;
} }
size_t switch_thread_audio_buffer_size(void *data) size_t switch_thread_audio_buffer_size(void *data)
{ {
switch_thread_audio_t *swa = (switch_thread_audio_t *)data; switch_thread_audio_t *swa = (switch_thread_audio_t *)data;
if (!swa) if (!swa)
return 0; return 0;
return swa->fifoSize; return swa->fifoSize;
} }
audio_driver_t audio_switch_thread = { audio_driver_t audio_switch_thread = {
switch_thread_audio_init, switch_thread_audio_init,
switch_thread_audio_write, switch_thread_audio_write,
switch_thread_audio_stop, switch_thread_audio_stop,
switch_thread_audio_start, switch_thread_audio_start,
switch_thread_audio_alive, switch_thread_audio_alive,
switch_thread_audio_set_nonblock_state, switch_thread_audio_set_nonblock_state,
switch_thread_audio_free, switch_thread_audio_free,
switch_thread_audio_use_float, switch_thread_audio_use_float,
"switch_thread", "switch_thread",
NULL, /* device_list_new */ NULL, /* device_list_new */
NULL, /* device_list_free */ NULL, /* device_list_free */
switch_thread_audio_write_avail, switch_thread_audio_write_avail,
switch_thread_audio_buffer_size switch_thread_audio_buffer_size
}; };
/* vim: set ts=6 sw=6 sts=6: */ /* vim: set ts=6 sw=6 sts=6: */

File diff suppressed because it is too large Load Diff

View File

@ -1,59 +1,59 @@
#ifndef SWITCH_COMMON_H__ #ifndef SWITCH_COMMON_H__
#define SWITCH_COMMON_H__ #define SWITCH_COMMON_H__
#include <switch.h> #include <switch.h>
#include <gfx/scaler/scaler.h> #include <gfx/scaler/scaler.h>
typedef struct typedef struct
{ {
bool vsync; bool vsync;
bool rgb32; bool rgb32;
bool smooth; // bilinear bool smooth; // bilinear
unsigned width, height; unsigned width, height;
unsigned rotation; unsigned rotation;
struct video_viewport vp; struct video_viewport vp;
struct texture_image *overlay; struct texture_image *overlay;
bool overlay_enabled; bool overlay_enabled;
bool in_menu; bool in_menu;
struct struct
{ {
bool enable; bool enable;
bool fullscreen; bool fullscreen;
uint32_t *pixels; uint32_t *pixels;
uint32_t width; uint32_t width;
uint32_t height; uint32_t height;
unsigned tgtw; unsigned tgtw;
unsigned tgth; unsigned tgth;
struct scaler_ctx scaler; struct scaler_ctx scaler;
} menu_texture; } menu_texture;
struct struct
{ {
uint32_t width; uint32_t width;
uint32_t height; uint32_t height;
uint32_t x_offset; uint32_t x_offset;
} hw_scale; } hw_scale;
uint32_t image[1280 * 720]; uint32_t image[1280 * 720];
uint32_t tmp_image[1280 * 720]; uint32_t tmp_image[1280 * 720];
u32 cnt; u32 cnt;
struct scaler_ctx scaler; struct scaler_ctx scaler;
uint32_t last_width; uint32_t last_width;
uint32_t last_height; uint32_t last_height;
bool keep_aspect; bool keep_aspect;
bool should_resize; bool should_resize;
bool need_clear; bool need_clear;
bool is_threaded; bool is_threaded;
bool o_size; bool o_size;
uint32_t o_height; uint32_t o_height;
uint32_t o_width; uint32_t o_width;
} switch_video_t; } switch_video_t;
void gfx_slow_swizzling_blit(uint32_t *buffer, uint32_t *image, int w, int h, int tx, int ty, bool blend); void gfx_slow_swizzling_blit(uint32_t *buffer, uint32_t *image, int w, int h, int tx, int ty, bool blend);
#endif #endif

File diff suppressed because it is too large Load Diff

View File

@ -1,207 +1,207 @@
/* Copyright (C) 2018 - M4xw <m4x@m4xw.net>, RetroArch Team /* Copyright (C) 2018 - M4xw <m4x@m4xw.net>, RetroArch Team
* *
* --------------------------------------------------------------------------------------- * ---------------------------------------------------------------------------------------
* The following license statement only applies to this file (switch_pthread.h). * The following license statement only applies to this file (switch_pthread.h).
* --------------------------------------------------------------------------------------- * ---------------------------------------------------------------------------------------
* *
* Permission is hereby granted, free of charge, * Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"), * to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to * to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
* *
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/ */
#ifndef _SWITCH_PTHREAD_WRAP_ #ifndef _SWITCH_PTHREAD_WRAP_
#define _SWITCH_PTHREAD_WRAP_ #define _SWITCH_PTHREAD_WRAP_
#include <time.h> #include <time.h>
#include <stdio.h> #include <stdio.h>
#include <switch.h> #include <switch.h>
#include <errno.h> #include <errno.h>
#include "../include/retro_inline.h" #include "../include/retro_inline.h"
#include "../../verbosity.h" #include "../../verbosity.h"
#define THREADVARS_MAGIC 0x21545624 // !TV$ #define THREADVARS_MAGIC 0x21545624 // !TV$
// This structure is exactly 0x20 bytes, if more is needed modify getThreadVars() below // This structure is exactly 0x20 bytes, if more is needed modify getThreadVars() below
typedef struct typedef struct
{ {
// Magic value used to check if the struct is initialized // Magic value used to check if the struct is initialized
u32 magic; u32 magic;
// Thread handle, for mutexes // Thread handle, for mutexes
Handle handle; Handle handle;
// Pointer to the current thread (if exists) // Pointer to the current thread (if exists)
Thread *thread_ptr; Thread *thread_ptr;
// Pointer to this thread's newlib state // Pointer to this thread's newlib state
struct _reent *reent; struct _reent *reent;
// Pointer to this thread's thread-local segment // Pointer to this thread's thread-local segment
void *tls_tp; // !! Offset needs to be TLS+0x1F8 for __aarch64_read_tp !! void *tls_tp; // !! Offset needs to be TLS+0x1F8 for __aarch64_read_tp !!
} ThreadVars; } ThreadVars;
static INLINE ThreadVars *getThreadVars(void) static INLINE ThreadVars *getThreadVars(void)
{ {
return (ThreadVars *)((u8 *)armGetTls() + 0x1E0); return (ThreadVars *)((u8 *)armGetTls() + 0x1E0);
} }
#define STACKSIZE (8 * 1024) #define STACKSIZE (8 * 1024)
/* libnx threads return void but pthreads return void pointer */ /* libnx threads return void but pthreads return void pointer */
static uint32_t threadCounter = 1; static uint32_t threadCounter = 1;
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg) int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg)
{ {
u32 prio = 0; u32 prio = 0;
Thread new_switch_thread; Thread new_switch_thread;
svcGetThreadPriority(&prio, CUR_THREAD_HANDLE); svcGetThreadPriority(&prio, CUR_THREAD_HANDLE);
// Launch threads on Core 1 // Launch threads on Core 1
int rc = threadCreate(&new_switch_thread, (void (*)(void *))start_routine, arg, STACKSIZE, prio - 1, 1); int rc = threadCreate(&new_switch_thread, (void (*)(void *))start_routine, arg, STACKSIZE, prio - 1, 1);
if (R_FAILED(rc)) if (R_FAILED(rc))
{ {
return EAGAIN; return EAGAIN;
} }
printf("[Threading]: Starting Thread(#%i)\n", threadCounter); printf("[Threading]: Starting Thread(#%i)\n", threadCounter);
if (R_FAILED(threadStart(&new_switch_thread))) if (R_FAILED(threadStart(&new_switch_thread)))
{ {
threadClose(&new_switch_thread); threadClose(&new_switch_thread);
return -1; return -1;
} }
*thread = new_switch_thread; *thread = new_switch_thread;
return 0; return 0;
} }
void pthread_exit(void *retval) void pthread_exit(void *retval)
{ {
(void)retval; (void)retval;
printf("[Threading]: Exiting Thread\n"); printf("[Threading]: Exiting Thread\n");
svcExitThread(); svcExitThread();
} }
static INLINE Thread threadGetCurrent(void) static INLINE Thread threadGetCurrent(void)
{ {
ThreadVars *tv = getThreadVars(); ThreadVars *tv = getThreadVars();
return *tv->thread_ptr; return *tv->thread_ptr;
} }
static INLINE pthread_t pthread_self(void) static INLINE pthread_t pthread_self(void)
{ {
return threadGetCurrent(); return threadGetCurrent();
} }
static INLINE int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) static INLINE int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{ {
mutexInit(mutex); mutexInit(mutex);
return 0; return 0;
} }
INLINE int pthread_mutex_destroy(pthread_mutex_t *mutex) INLINE int pthread_mutex_destroy(pthread_mutex_t *mutex)
{ {
// Nothing // Nothing
*mutex = 0; *mutex = 0;
return 0; return 0;
} }
static INLINE int pthread_mutex_lock(pthread_mutex_t *mutex) static INLINE int pthread_mutex_lock(pthread_mutex_t *mutex)
{ {
mutexLock(mutex); mutexLock(mutex);
return 0; return 0;
} }
static INLINE int pthread_mutex_unlock(pthread_mutex_t *mutex) static INLINE int pthread_mutex_unlock(pthread_mutex_t *mutex)
{ {
mutexUnlock(mutex); mutexUnlock(mutex);
return 0; return 0;
} }
INLINE int pthread_detach(pthread_t thread) INLINE int pthread_detach(pthread_t thread)
{ {
(void)thread; (void)thread;
// Nothing for now // Nothing for now
return 0; return 0;
} }
static INLINE int pthread_join(pthread_t thread, void **retval) static INLINE int pthread_join(pthread_t thread, void **retval)
{ {
printf("[Threading]: Waiting for Thread Exit\n"); printf("[Threading]: Waiting for Thread Exit\n");
threadWaitForExit(&thread); threadWaitForExit(&thread);
threadClose(&thread); threadClose(&thread);
return 0; return 0;
} }
static INLINE int pthread_mutex_trylock(pthread_mutex_t *mutex) static INLINE int pthread_mutex_trylock(pthread_mutex_t *mutex)
{ {
return mutexTryLock(mutex) ? 0 : 1; return mutexTryLock(mutex) ? 0 : 1;
} }
static INLINE int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) static INLINE int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{ {
condvarWait(cond, mutex); condvarWait(cond, mutex);
return 0; return 0;
} }
static INLINE int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime) static INLINE int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime)
{ {
condvarWaitTimeout(cond, mutex, abstime->tv_nsec); condvarWaitTimeout(cond, mutex, abstime->tv_nsec);
return 0; return 0;
} }
static INLINE int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr) static INLINE int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
{ {
condvarInit(cond); condvarInit(cond);
return 0; return 0;
} }
static INLINE int pthread_cond_signal(pthread_cond_t *cond) static INLINE int pthread_cond_signal(pthread_cond_t *cond)
{ {
condvarWakeOne(cond); condvarWakeOne(cond);
return 0; return 0;
} }
static INLINE int pthread_cond_broadcast(pthread_cond_t *cond) static INLINE int pthread_cond_broadcast(pthread_cond_t *cond)
{ {
condvarWakeAll(cond); condvarWakeAll(cond);
return 0; return 0;
} }
INLINE int pthread_cond_destroy(pthread_cond_t *cond) INLINE int pthread_cond_destroy(pthread_cond_t *cond)
{ {
// Nothing // Nothing
return 0; return 0;
} }
INLINE int pthread_equal(pthread_t t1, pthread_t t2) INLINE int pthread_equal(pthread_t t1, pthread_t t2)
{ {
if (t1.handle == t2.handle) if (t1.handle == t2.handle)
return 1; return 1;
return 0; return 0;
} }
#endif #endif