mirror of
https://github.com/libretro/RetroArch
synced 2025-03-18 04:21:19 +00:00
Implement FFT for better SNR verification.
This commit is contained in:
parent
b50ddfc87a
commit
24817543e0
@ -15,7 +15,6 @@ HAVE_DYLIB = 1
|
|||||||
HAVE_NETPLAY = 1
|
HAVE_NETPLAY = 1
|
||||||
HAVE_THREADS = 1
|
HAVE_THREADS = 1
|
||||||
DYNAMIC = 1
|
DYNAMIC = 1
|
||||||
HAVE_SINC = 1
|
|
||||||
|
|
||||||
ifeq ($(SLIM),)
|
ifeq ($(SLIM),)
|
||||||
HAVE_SDL_IMAGE = 1
|
HAVE_SDL_IMAGE = 1
|
||||||
@ -26,6 +25,7 @@ ifeq ($(SLIM),)
|
|||||||
HAVE_CG = 1
|
HAVE_CG = 1
|
||||||
HAVE_PYTHON = 1
|
HAVE_PYTHON = 1
|
||||||
HAVE_FFMPEG = 1
|
HAVE_FFMPEG = 1
|
||||||
|
HAVE_SINC = 1
|
||||||
endif
|
endif
|
||||||
|
|
||||||
libsnes ?= -lsnes
|
libsnes ?= -lsnes
|
||||||
@ -142,6 +142,7 @@ endif
|
|||||||
|
|
||||||
ifeq ($(HAVE_SINC), 1)
|
ifeq ($(HAVE_SINC), 1)
|
||||||
OBJ += audio/sinc.o
|
OBJ += audio/sinc.o
|
||||||
|
CFLAGS += -msse
|
||||||
else
|
else
|
||||||
OBJ += audio/hermite.o
|
OBJ += audio/hermite.o
|
||||||
endif
|
endif
|
||||||
|
@ -45,7 +45,7 @@
|
|||||||
#define PHASES_WRAP (1 << (PHASE_BITS + SUBPHASE_BITS))
|
#define PHASES_WRAP (1 << (PHASE_BITS + SUBPHASE_BITS))
|
||||||
#define FRAMES_SHIFT (PHASE_BITS + SUBPHASE_BITS)
|
#define FRAMES_SHIFT (PHASE_BITS + SUBPHASE_BITS)
|
||||||
|
|
||||||
#define SIDELOBES 32
|
#define SIDELOBES 16
|
||||||
#define TAPS (SIDELOBES * 2)
|
#define TAPS (SIDELOBES * 2)
|
||||||
#define CUTOFF 0.9
|
#define CUTOFF 0.9
|
||||||
|
|
||||||
|
234
audio/test/snr.c
234
audio/test/snr.c
@ -20,7 +20,9 @@
|
|||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
|
#include <complex.h>
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
|
#include <stdbool.h>
|
||||||
|
|
||||||
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
|
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
|
||||||
{
|
{
|
||||||
@ -31,43 +33,6 @@ static void gen_signal(float *out, double omega, double bias_samples, size_t sam
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static double calculate_gain(const float *orig, const float *resamp, size_t samples)
|
|
||||||
{
|
|
||||||
double orig_power = 0.0;
|
|
||||||
double resamp_power = 0.0;
|
|
||||||
|
|
||||||
for (size_t i = 0; i < samples; i += 2)
|
|
||||||
orig_power += orig[i] * orig[i];
|
|
||||||
|
|
||||||
for (size_t i = 0; i < samples; i += 2)
|
|
||||||
resamp_power += resamp[i] * resamp[i];
|
|
||||||
|
|
||||||
return sqrt(resamp_power / orig_power);
|
|
||||||
}
|
|
||||||
|
|
||||||
static double calculate_phase(const float *orig, const float *resamp, double makeup_gain, size_t samples)
|
|
||||||
{
|
|
||||||
double max_correlation = 0.0;
|
|
||||||
for (size_t i = 0; i < samples; i += 2)
|
|
||||||
max_correlation += orig[i] * orig[i];
|
|
||||||
|
|
||||||
double actual_correlation = 0.0;
|
|
||||||
for (size_t i = 0; i < samples; i += 2)
|
|
||||||
{
|
|
||||||
double resampled = makeup_gain * resamp[i];
|
|
||||||
actual_correlation += resampled * orig[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
double corr = actual_correlation / max_correlation;
|
|
||||||
if (corr > 1.0)
|
|
||||||
corr = 1.0;
|
|
||||||
|
|
||||||
if (fabs(corr) < 0.0001)
|
|
||||||
return 0.5 * M_PI;
|
|
||||||
else
|
|
||||||
return acos(corr);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct snr_result
|
struct snr_result
|
||||||
{
|
{
|
||||||
double snr;
|
double snr;
|
||||||
@ -75,64 +40,156 @@ struct snr_result
|
|||||||
double phase;
|
double phase;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static unsigned bitrange(unsigned len)
|
||||||
|
{
|
||||||
|
unsigned ret = 0;
|
||||||
|
while ((len >>= 1))
|
||||||
|
ret++;
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static unsigned bitswap(unsigned i, unsigned range)
|
||||||
|
{
|
||||||
|
unsigned ret = 0;
|
||||||
|
for (unsigned shifts = 0; shifts < range; shifts++)
|
||||||
|
ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0;
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
// When interleaving the butterfly buffer, addressing puts bits in reverse.
|
||||||
|
// [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7]
|
||||||
|
static void interleave(complex double *butterfly_buf, size_t samples)
|
||||||
|
{
|
||||||
|
unsigned range = bitrange(samples);
|
||||||
|
for (unsigned i = 0; i < samples; i++)
|
||||||
|
{
|
||||||
|
unsigned target = bitswap(i, range);
|
||||||
|
if (target > i)
|
||||||
|
{
|
||||||
|
complex double tmp = butterfly_buf[target];
|
||||||
|
butterfly_buf[target] = butterfly_buf[i];
|
||||||
|
butterfly_buf[i] = tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static complex double gen_phase(double index)
|
||||||
|
{
|
||||||
|
return cexp(-M_PI * I * index);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void butterfly(complex double *a, complex double *b, complex double mod)
|
||||||
|
{
|
||||||
|
mod *= *b;
|
||||||
|
complex double a_ = *a + mod;
|
||||||
|
complex double b_ = *a - mod;
|
||||||
|
*a = a_;
|
||||||
|
*b = b_;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void butterflies(complex double *butterfly_buf, size_t step_size, size_t samples)
|
||||||
|
{
|
||||||
|
for (unsigned i = 0; i < samples; i += 2 * step_size)
|
||||||
|
for (unsigned j = i; j < i + step_size; j++)
|
||||||
|
butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((double)(j - i) / step_size));
|
||||||
|
}
|
||||||
|
|
||||||
|
static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples)
|
||||||
|
{
|
||||||
|
// Enforce POT.
|
||||||
|
assert((samples & (samples - 1)) == 0);
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < samples; i++)
|
||||||
|
butterfly_buf[i] = data[2 * i];
|
||||||
|
|
||||||
|
// Interleave buffer to work with FFT.
|
||||||
|
interleave(butterfly_buf, samples);
|
||||||
|
|
||||||
|
// Fly, lovely butterflies! :D
|
||||||
|
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
|
||||||
|
butterflies(butterfly_buf, step_size, samples);
|
||||||
|
|
||||||
|
// We only have real data.
|
||||||
|
for (unsigned i = 1; i < samples / 2; i++)
|
||||||
|
butterfly_buf[i] += butterfly_buf[samples - i];
|
||||||
|
|
||||||
|
// Normalize amplitudes.
|
||||||
|
for (unsigned i = 0; i < samples / 2; i++)
|
||||||
|
butterfly_buf[i] /= (double)samples;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void test_fft(void)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "Sanity checking FFT ...\n");
|
||||||
|
float signal[32];
|
||||||
|
complex double butterfly_buf[16];
|
||||||
|
|
||||||
|
const float freqs[] = {
|
||||||
|
1.0, 4.0, 6.0,
|
||||||
|
};
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < 16; i++)
|
||||||
|
{
|
||||||
|
signal[2 * i] = 0.0;
|
||||||
|
for (unsigned j = 0; j < sizeof(freqs) / sizeof(freqs[0]); j++)
|
||||||
|
signal[2 * i] += cos(2.0 * M_PI * i * freqs[j] / 16.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
calculate_fft(signal, butterfly_buf, 16);
|
||||||
|
|
||||||
|
printf("FFT: { ");
|
||||||
|
for (unsigned i = 0; i < 7; i++)
|
||||||
|
printf("%4.2lf, ", cabs(butterfly_buf[i]));
|
||||||
|
printf("%4.2lf }\n", cabs(butterfly_buf[7]));
|
||||||
|
}
|
||||||
|
|
||||||
// This doesn't yet take account for slight phase distortions,
|
// This doesn't yet take account for slight phase distortions,
|
||||||
// so reported SNR is lower than reality.
|
// so reported SNR is lower than reality.
|
||||||
static void calculate_snr(struct snr_result *res,
|
static void calculate_snr(struct snr_result *res,
|
||||||
double omega,
|
unsigned in_rate,
|
||||||
float *orig, const float *resamp, size_t samples)
|
const float *resamp, complex double *butterfly_buf, size_t samples)
|
||||||
{
|
{
|
||||||
|
samples >>= 1;
|
||||||
|
calculate_fft(resamp, butterfly_buf, samples);
|
||||||
|
|
||||||
|
complex double phase = butterfly_buf[in_rate];
|
||||||
|
res->phase = carg(phase);
|
||||||
|
|
||||||
|
double signal = cabs(phase * phase);
|
||||||
|
butterfly_buf[in_rate] = 0.0;
|
||||||
|
|
||||||
double noise = 0.0;
|
double noise = 0.0;
|
||||||
double signal = 0.0;
|
for (unsigned i = 0; i < samples / 2; i++)
|
||||||
|
noise += cabs(butterfly_buf[i] * butterfly_buf[i]);
|
||||||
|
|
||||||
gen_signal(orig, omega, 0, samples);
|
res->snr = 10.0 * log10(signal / noise);
|
||||||
|
res->gain = 10.0 * log10(signal);
|
||||||
// Account for gain losses at higher frequencies as it's not really noise.
|
|
||||||
double filter_gain = calculate_gain(orig, resamp, samples);
|
|
||||||
double makeup_gain = 1.0 / filter_gain;
|
|
||||||
|
|
||||||
double phase = calculate_phase(orig, resamp, makeup_gain, samples);
|
|
||||||
|
|
||||||
for (size_t i = 0; i < samples; i += 2)
|
|
||||||
{
|
|
||||||
signal += orig[i] * orig[i];
|
|
||||||
double diff = makeup_gain * resamp[i] - orig[i];
|
|
||||||
noise += diff * diff;
|
|
||||||
}
|
|
||||||
|
|
||||||
res->snr = 10 * log10(signal / noise);
|
|
||||||
res->gain = 20.0 * log10(filter_gain);
|
|
||||||
res->phase = phase;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
float *input;
|
if (argc != 2)
|
||||||
float *output;
|
|
||||||
float *output_expected;
|
|
||||||
|
|
||||||
if (argc != 3)
|
|
||||||
{
|
{
|
||||||
fprintf(stderr, "Usage: %s <in-rate> <out-rate> (max ratio: 8.0)\n", argv[0]);
|
fprintf(stderr, "Usage: %s <ratio> (out-rate is fixed for FFT).\n", argv[0]);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
unsigned in_rate = strtoul(argv[1], NULL, 0);
|
double ratio = strtod(argv[1], NULL);
|
||||||
unsigned out_rate = strtoul(argv[2], NULL, 0);
|
|
||||||
|
|
||||||
double ratio = (double)out_rate / in_rate;
|
const unsigned fft_samples = 1024 * 128;
|
||||||
if (ratio >= 7.99)
|
unsigned out_rate = fft_samples;
|
||||||
{
|
unsigned in_rate = out_rate / ratio;
|
||||||
fprintf(stderr, "Ratio is too high ...\n");
|
ratio = (double)out_rate / in_rate;
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ratio < 1.0)
|
if (ratio <= 1.0)
|
||||||
{
|
{
|
||||||
fprintf(stderr, "Ratio too low ...\n");
|
fprintf(stderr, "Ratio too low ...\n");
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
static const float freq_list[] = {
|
static const unsigned freq_list[] = {
|
||||||
30, 50,
|
30, 50,
|
||||||
100, 150,
|
100, 150,
|
||||||
200, 250,
|
200, 250,
|
||||||
@ -165,23 +222,23 @@ int main(int argc, char *argv[])
|
|||||||
};
|
};
|
||||||
|
|
||||||
unsigned samples = in_rate * 2;
|
unsigned samples = in_rate * 2;
|
||||||
input = calloc(sizeof(float), samples);
|
float *input = calloc(sizeof(float), samples);
|
||||||
output = calloc(sizeof(float), samples * 8);
|
float *output = calloc(sizeof(float), (fft_samples + 1) * 2);
|
||||||
output_expected = calloc(sizeof(float), samples * 8);
|
complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples);
|
||||||
|
bool warned = false;
|
||||||
assert(input);
|
assert(input);
|
||||||
assert(output);
|
assert(output);
|
||||||
assert(output_expected);
|
|
||||||
|
|
||||||
ssnes_resampler_t *re = resampler_new();
|
ssnes_resampler_t *re = resampler_new();
|
||||||
assert(re);
|
assert(re);
|
||||||
|
|
||||||
|
test_fft();
|
||||||
|
|
||||||
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]) && freq_list[i] < 0.5f * in_rate; i++)
|
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]) && freq_list[i] < 0.5f * in_rate; i++)
|
||||||
{
|
{
|
||||||
double omega = 2.0 * M_PI * freq_list[i] / in_rate;
|
double omega = 2.0 * M_PI * freq_list[i] / in_rate;
|
||||||
double omega_out = 2.0 * M_PI * freq_list[i] / out_rate;
|
|
||||||
double sample_offset;
|
double sample_offset;
|
||||||
resampler_preinit(re, omega, &sample_offset);
|
resampler_preinit(re, omega, &sample_offset);
|
||||||
|
|
||||||
gen_signal(input, omega, sample_offset, samples);
|
gen_signal(input, omega, sample_offset, samples);
|
||||||
|
|
||||||
struct resampler_data data = {
|
struct resampler_data data = {
|
||||||
@ -195,21 +252,22 @@ int main(int argc, char *argv[])
|
|||||||
|
|
||||||
unsigned out_samples = data.output_frames * 2;
|
unsigned out_samples = data.output_frames * 2;
|
||||||
|
|
||||||
|
if (out_samples != fft_samples * 2 && !warned)
|
||||||
|
{
|
||||||
|
fprintf(stderr, "Out samples != fft_samples ... %u / %u\n", out_samples, fft_samples * 2);
|
||||||
|
warned = true;
|
||||||
|
}
|
||||||
|
|
||||||
struct snr_result res;
|
struct snr_result res;
|
||||||
calculate_snr(&res, omega_out, output_expected, output, out_samples);
|
calculate_snr(&res, freq_list[i], output, butterfly_buf, fft_samples * 2);
|
||||||
|
|
||||||
printf("SNR @ %7.1f Hz: %6.2lf dB, Gain: %6.1lf dB, Phase: %6.4f rad\n",
|
printf("SNR @ %5u Hz: %6.2lf dB, Gain: %6.1lf dB, Phase: %6.4f rad\n",
|
||||||
freq_list[i], res.snr, res.gain, res.phase);
|
freq_list[i], res.snr, res.gain, res.phase);
|
||||||
|
|
||||||
//printf("Generated:\n\t");
|
|
||||||
//for (unsigned i = 0; i < 10; i++)
|
|
||||||
// printf("%.4f, ", output[i]);
|
|
||||||
//printf("\n");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
resampler_free(re);
|
resampler_free(re);
|
||||||
free(input);
|
free(input);
|
||||||
free(output);
|
free(output);
|
||||||
free(output_expected);
|
free(butterfly_buf);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user