Refactor sinc resampler so that we can set resampler quality

at runtime
This commit is contained in:
twinaphex 2017-12-31 20:40:04 +01:00
parent 3090e85064
commit 0dd2f075fe
2 changed files with 301 additions and 166 deletions

View File

@ -38,7 +38,7 @@
#include <xmmintrin.h>
#endif
#if defined(__AVX__) && ENABLE_AVX
#if defined(__AVX__)
#include <immintrin.h>
#endif
@ -51,48 +51,13 @@
*/
/* TODO, make all this more configurable. */
#if defined(SINC_LOWEST_QUALITY)
#define SINC_WINDOW_LANCZOS
#define PHASE_BITS 12
#define SINC_COEFF_LERP 0
#define SUBPHASE_BITS 10
#define ENABLE_AVX 0
#elif defined(SINC_LOWER_QUALITY)
#define SINC_WINDOW_LANCZOS
#define PHASE_BITS 12
#define SUBPHASE_BITS 10
#define SINC_COEFF_LERP 0
#define ENABLE_AVX 0
#elif defined(SINC_HIGHER_QUALITY)
#define SINC_WINDOW_KAISER
#define SINC_WINDOW_KAISER_BETA 10.5
#define PHASE_BITS 10
#define SUBPHASE_BITS 14
#define SINC_COEFF_LERP 1
#define ENABLE_AVX 1
#elif defined(SINC_HIGHEST_QUALITY)
#define SINC_WINDOW_KAISER
#define SINC_WINDOW_KAISER_BETA 14.5
#define PHASE_BITS 10
#define SUBPHASE_BITS 14
#define SINC_COEFF_LERP 1
#define ENABLE_AVX 1
#else
#define SINC_WINDOW_KAISER
#define SINC_WINDOW_KAISER_BETA 5.5
#define PHASE_BITS 8
#define SUBPHASE_BITS 16
#define SINC_COEFF_LERP 1
#define ENABLE_AVX 0
#endif
#if defined(SINC_WINDOW_LANCZOS)
#define window_function(idx) (lanzcos_window_function(idx))
#elif defined(SINC_WINDOW_KAISER)
#define window_function(idx) (kaiser_window_function(idx, SINC_WINDOW_KAISER_BETA))
#else
#error "No SINC window function defined."
#endif
enum sinc_window
{
SINC_WINDOW_NONE = 0,
SINC_WINDOW_KAISER,
SINC_WINDOW_LANCZOS,
};
/* For the little amount of taps we're using,
* SSE1 is faster than AVX for some reason.
@ -100,18 +65,18 @@
* of sinc taps, the AVX code is clearly faster than SSE1.
*/
#define PHASES (1 << (PHASE_BITS + SUBPHASE_BITS))
#if SINC_COEFF_LERP
#define SUBPHASE_MASK ((1 << SUBPHASE_BITS) - 1)
#define SUBPHASE_MOD (1.0f / (1 << SUBPHASE_BITS))
#endif
typedef struct rarch_sinc_resampler
{
unsigned enable_avx;
unsigned phase_bits;
unsigned subphase_bits;
unsigned subphase_mask;
unsigned taps;
unsigned ptr;
uint32_t time;
float subphase_mod;
float kaiser_beta;
enum sinc_window window_type;
/* A buffer for phase_table, buffer_l and buffer_r
* are created in a single calloc().
@ -122,7 +87,7 @@ typedef struct rarch_sinc_resampler
float *buffer_r;
} rarch_sinc_resampler_t;
#if defined(__ARM_NEON__) && !defined(SINC_COEFF_LERP)
#if defined(__ARM_NEON__)
/* Assumes that taps >= 8, and that taps is a multiple of 8. */
void process_sinc_neon_asm(float *out, const float *left,
const float *right, const float *coeff, unsigned taps);
@ -130,8 +95,9 @@ void process_sinc_neon_asm(float *out, const float *left,
static void resampler_sinc_process_neon(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = PHASES / data->ratio;
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
@ -139,7 +105,7 @@ static void resampler_sinc_process_neon(void *re_, struct resampler_data *data)
while (frames)
{
while (frames && resamp->time >= PHASES)
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
@ -152,17 +118,17 @@ static void resampler_sinc_process_neon(void *re_, struct resampler_data *data)
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= PHASES;
resamp->time -= phases;
frames--;
}
while (resamp->time < PHASES)
while (resamp->time < phases)
{
unsigned i;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> SUBPHASE_BITS;
unsigned phase = resamp->time >> resamp->subphase_bits;
const float *phase_table = resamp->phase_table + phase * taps;
process_sinc_neon_asm(output, buffer_l, buffer_r, phase_table, taps);
@ -177,12 +143,13 @@ static void resampler_sinc_process_neon(void *re_, struct resampler_data *data)
}
#endif
#if defined(__AVX__) && ENABLE_AVX
#if defined(__AVX__)
static void resampler_sinc_process_avx(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = PHASES / data->ratio;
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
@ -190,7 +157,7 @@ static void resampler_sinc_process_avx(void *re_, struct resampler_data *data)
while (frames)
{
while (frames && resamp->time >= PHASES)
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
@ -203,41 +170,51 @@ static void resampler_sinc_process_avx(void *re_, struct resampler_data *data)
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= PHASES;
resamp->time -= phases;
frames--;
}
while (resamp->time < PHASES)
while (resamp->time < phases)
{
unsigned i;
__m256 delta, sum_l, sum_r;
float *delta_table = NULL;
float *phase_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> SUBPHASE_BITS;
#if SINC_COEFF_LERP
const float *phase_table = resamp->phase_table + phase * taps * 2;
const float *delta_table = phase_table + taps;
__m256 delta = _mm256_set1_ps((float)
(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD);
#else
const float *phase_table = resamp->phase_table + phase * taps;
#endif
unsigned phase = resamp->time >> resamp->subphase_bits;
__m256 sum_l = _mm256_setzero_ps();
__m256 sum_r = _mm256_setzero_ps();
phase_table = resamp->phase_table + phase * taps;
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = _mm256_set1_ps((float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
}
sum_l = _mm256_setzero_ps();
sum_r = _mm256_setzero_ps();
for (i = 0; i < taps; i += 8)
{
__m256 sinc;
__m256 buf_l = _mm256_loadu_ps(buffer_l + i);
__m256 buf_r = _mm256_loadu_ps(buffer_r + i);
#if SINC_COEFF_LERP
__m256 deltas = _mm256_load_ps(delta_table + i);
__m256 sinc = _mm256_add_ps(_mm256_load_ps(phase_table + i),
_mm256_mul_ps(deltas, delta));
#else
__m256 sinc = _mm256_load_ps(phase_table + i);
#endif
if (resamp->window_type == SINC_WINDOW_KAISER)
{
__m256 deltas = _mm256_load_ps(delta_table + i);
sinc = _mm256_add_ps(_mm256_load_ps((const float*)phase_table + i),
_mm256_mul_ps(deltas, delta));
}
else
{
sinc = _mm256_load_ps((const float*)phase_table + i);
}
sum_l = _mm256_add_ps(sum_l, _mm256_mul_ps(buf_l, sinc));
sum_r = _mm256_add_ps(sum_r, _mm256_mul_ps(buf_r, sinc));
}
@ -270,8 +247,9 @@ static void resampler_sinc_process_avx(void *re_, struct resampler_data *data)
static void resampler_sinc_process_sse(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = PHASES / data->ratio;
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
@ -279,7 +257,7 @@ static void resampler_sinc_process_sse(void *re_, struct resampler_data *data)
while (frames)
{
while (frames && resamp->time >= PHASES)
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
@ -292,42 +270,52 @@ static void resampler_sinc_process_sse(void *re_, struct resampler_data *data)
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= PHASES;
resamp->time -= phases;
frames--;
}
while (resamp->time < PHASES)
while (resamp->time < phases)
{
unsigned i;
__m128 sum;
__m128 sum, sum_l, sum_r, delta;
float *phase_table = NULL;
float *delta_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> SUBPHASE_BITS;
#if SINC_COEFF_LERP
const float *phase_table = resamp->phase_table + phase * taps * 2;
const float *delta_table = phase_table + taps;
__m128 delta = _mm_set1_ps((float)
(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD);
#else
const float *phase_table = resamp->phase_table + phase * taps;
#endif
unsigned phase = resamp->time >> resamp->subphase_bits;
__m128 sum_l = _mm_setzero_ps();
__m128 sum_r = _mm_setzero_ps();
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = _mm_set1_ps((float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
}
else
{
phase_table = resamp->phase_table + phase * taps;
}
sum_l = _mm_setzero_ps();
sum_r = _mm_setzero_ps();
for (i = 0; i < taps; i += 4)
{
__m128 deltas, _sinc;
__m128 buf_l = _mm_loadu_ps(buffer_l + i);
__m128 buf_r = _mm_loadu_ps(buffer_r + i);
#if SINC_COEFF_LERP
__m128 deltas = _mm_load_ps(delta_table + i);
__m128 _sinc = _mm_add_ps(_mm_load_ps(phase_table + i),
_mm_mul_ps(deltas, delta));
#else
__m128 _sinc = _mm_load_ps(phase_table + i);
#endif
if (resamp->window_type == SINC_WINDOW_KAISER)
{
deltas = _mm_load_ps(delta_table + i);
_sinc = _mm_add_ps(_mm_load_ps((const float*)phase_table + i),
_mm_mul_ps(deltas, delta));
}
else
{
_sinc = _mm_load_ps((const float*)phase_table + i);
}
sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, _sinc));
sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, _sinc));
}
@ -370,8 +358,9 @@ static void resampler_sinc_process_sse(void *re_, struct resampler_data *data)
static void resampler_sinc_process_c(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = PHASES / data->ratio;
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
@ -379,48 +368,55 @@ static void resampler_sinc_process_c(void *re_, struct resampler_data *data)
while (frames)
{
while (frames && resamp->time >= PHASES)
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= PHASES;
resamp->time -= phases;
frames--;
}
while (resamp->time < PHASES)
while (resamp->time < phases)
{
unsigned i;
float delta = 0.0f;
float sum_l = 0.0f;
float sum_r = 0.0f;
float *phase_table = NULL;
float *delta_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> SUBPHASE_BITS;
#if SINC_COEFF_LERP
const float *phase_table = resamp->phase_table + phase * taps * 2;
const float *delta_table = phase_table + taps;
float delta = (float)
(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD;
#else
const float *phase_table = resamp->phase_table + phase * taps;
#endif
float sum_l = 0.0f;
float sum_r = 0.0f;
unsigned phase = resamp->time >> resamp->subphase_bits;
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = (float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod;
}
else
{
phase_table = resamp->phase_table + phase * taps;
}
for (i = 0; i < taps; i++)
{
#if SINC_COEFF_LERP
float sinc_val = phase_table[i] + delta_table[i] * delta;
#else
float sinc_val = phase_table[i];
#endif
if (resamp->window_type == SINC_WINDOW_KAISER)
sinc_val = sinc_val + delta_table[i] * delta;
sum_l += buffer_l[i] * sinc_val;
sum_r += buffer_r[i] * sinc_val;
}
@ -438,11 +434,20 @@ static void resampler_sinc_process_c(void *re_, struct resampler_data *data)
data->output_frames = out_frames;
}
static void sinc_init_table(rarch_sinc_resampler_t *resamp, double cutoff,
static void resampler_sinc_free(void *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)data;
if (resamp)
memalign_free(resamp->main_buffer);
free(resamp);
}
static void sinc_init_table_kaiser(rarch_sinc_resampler_t *resamp,
double cutoff,
float *phase_table, int phases, int taps, bool calculate_delta)
{
int i, j;
double window_mod = window_function(0.0); /* Need to normalize w(0) to 1.0. */
double window_mod = kaiser_window_function(0.0, resamp->kaiser_beta); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
@ -457,7 +462,7 @@ static void sinc_init_table(rarch_sinc_resampler_t *resamp, double cutoff,
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
window_function(window_phase) / window_mod;
kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod;
phase_table[i * stride * taps + j] = val;
}
}
@ -488,53 +493,149 @@ static void sinc_init_table(rarch_sinc_resampler_t *resamp, double cutoff,
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
window_function(window_phase) / window_mod;
kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod;
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static void resampler_sinc_free(void *data)
static void sinc_init_table_lanczos(rarch_sinc_resampler_t *resamp, double cutoff,
float *phase_table, int phases, int taps, bool calculate_delta)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)data;
if (resamp)
memalign_free(resamp->main_buffer);
free(resamp);
int i, j;
double window_mod = lanzcos_window_function(0.0); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
for (i = 0; i < phases; i++)
{
for (j = 0; j < taps; j++)
{
double sinc_phase;
float val;
int n = j * phases + i;
double window_phase = (double)n / (phases * taps); /* [0, 1). */
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
lanzcos_window_function(window_phase) / window_mod;
phase_table[i * stride * taps + j] = val;
}
}
if (calculate_delta)
{
int phase;
int p;
for (p = 0; p < phases - 1; p++)
{
for (j = 0; j < taps; j++)
{
float delta = phase_table[(p + 1) * stride * taps + j] -
phase_table[p * stride * taps + j];
phase_table[(p * stride + 1) * taps + j] = delta;
}
}
phase = phases - 1;
for (j = 0; j < taps; j++)
{
float val, delta;
double sinc_phase;
int n = j * phases + (phase + 1);
double window_phase = (double)n / (phases * taps); /* (0, 1]. */
window_phase = 2.0 * window_phase - 1.0; /* (-1, 1] */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
lanzcos_window_function(window_phase) / window_mod;
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static void *resampler_sinc_new(const struct resampler_config *config,
double bandwidth_mod, resampler_simd_mask_t mask)
{
double cutoff;
size_t phase_elems, elems;
unsigned sidelobes = 0;
rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)
enum resampler_quality quality = RESAMPLER_QUALITY_DONTCARE;
double cutoff = 0.0;
size_t phase_elems = 0;
size_t elems = 0;
unsigned sidelobes = 0;
rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)
calloc(1, sizeof(*re));
if (!re)
return NULL;
(void)config;
#if defined(SINC_LOWEST_QUALITY)
cutoff = 0.98;
sidelobes = 2;
quality = RESAMPLER_QUALITY_LOWEST;
#elif defined(SINC_LOWER_QUALITY)
cutoff = 0.98;
sidelobes = 4;
quality = RESAMPLER_QUALITY_LOWER;
#elif defined(SINC_HIGHER_QUALITY)
cutoff = 0.90;
sidelobes = 32;
quality = RESAMPLER_QUALITY_HIGHER;
#elif defined(SINC_HIGHEST_QUALITY)
cutoff = 0.962;
sidelobes = 128;
quality = RESAMPLER_QUALITY_HIGHEST;
#else
cutoff = 0.825;
sidelobes = 8;
quality = RESAMPLER_QUALITY_NORMAL;
#endif
re->taps = sidelobes * 2;
re->window_type = SINC_WINDOW_NONE;
switch (quality)
{
case RESAMPLER_QUALITY_LOWEST:
cutoff = 0.98;
sidelobes = 2;
re->phase_bits = 12;
re->subphase_bits = 10;
re->window_type = SINC_WINDOW_LANCZOS;
re->enable_avx = 0;
break;
case RESAMPLER_QUALITY_LOWER:
cutoff = 0.98;
sidelobes = 4;
re->phase_bits = 12;
re->subphase_bits = 10;
re->window_type = SINC_WINDOW_LANCZOS;
re->enable_avx = 0;
break;
case RESAMPLER_QUALITY_HIGHER:
cutoff = 0.90;
sidelobes = 32;
re->phase_bits = 10;
re->subphase_bits = 14;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 10.5;
re->enable_avx = 1;
break;
case RESAMPLER_QUALITY_HIGHEST:
cutoff = 0.962;
sidelobes = 128;
re->phase_bits = 10;
re->subphase_bits = 14;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 14.5;
re->enable_avx = 1;
break;
case RESAMPLER_QUALITY_NORMAL:
case RESAMPLER_QUALITY_DONTCARE:
cutoff = 0.825;
sidelobes = 8;
re->phase_bits = 8;
re->subphase_bits = 16;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 5.5;
re->enable_avx = 0;
break;
}
re->subphase_mask = (1 << re->subphase_bits) - 1;
re->subphase_mod = 1.0f / (1 << re->subphase_bits);
re->taps = sidelobes * 2;
/* Downsampling, must lower cutoff, and extend number of
* taps accordingly to keep same stopband attenuation. */
@ -545,18 +646,23 @@ static void *resampler_sinc_new(const struct resampler_config *config,
}
/* Be SIMD-friendly. */
#if (defined(__AVX__) && ENABLE_AVX) || (defined(__ARM_NEON__))
re->taps = (re->taps + 7) & ~7;
#else
re->taps = (re->taps + 3) & ~3;
#if defined(__AVX__)
if (re->enable_avx)
re->taps = (re->taps + 7) & ~7;
else
#endif
{
#if defined(__ARM_NEON__)
re->taps = (re->taps + 7) & ~7;
#else
re->taps = (re->taps + 3) & ~3;
#endif
}
#if SINC_COEFF_LERP
phase_elems = ((1 << PHASE_BITS) * re->taps) * 2;
#else
phase_elems = ((1 << PHASE_BITS) * re->taps);
#endif
elems = phase_elems + 4 * re->taps;
phase_elems = ((1 << re->phase_bits) * re->taps);
if (re->window_type == SINC_WINDOW_KAISER)
phase_elems = phase_elems * 2;
elems = phase_elems + 4 * re->taps;
re->main_buffer = (float*)memalign_alloc(128, sizeof(float) * elems);
if (!re->main_buffer)
@ -566,21 +672,40 @@ static void *resampler_sinc_new(const struct resampler_config *config,
re->buffer_l = re->main_buffer + phase_elems;
re->buffer_r = re->buffer_l + 2 * re->taps;
sinc_init_table(re, cutoff, re->phase_table,
1 << PHASE_BITS, re->taps, SINC_COEFF_LERP);
switch (re->window_type)
{
case SINC_WINDOW_LANCZOS:
sinc_init_table_lanczos(re, cutoff, re->phase_table,
1 << re->phase_bits, re->taps, false);
break;
case SINC_WINDOW_KAISER:
sinc_init_table_kaiser(re, cutoff, re->phase_table,
1 << re->phase_bits, re->taps, true);
break;
case SINC_WINDOW_NONE:
goto error;
}
sinc_resampler.process = resampler_sinc_process_c;
#if defined(__AVX__) && ENABLE_AVX
if (mask & RESAMPLER_SIMD_AVX)
if (mask & RESAMPLER_SIMD_AVX && re->enable_avx)
{
#if defined(__AVX__)
sinc_resampler.process = resampler_sinc_process_avx;
#elif defined(__SSE__)
if (mask & RESAMPLER_SIMD_SSE)
#endif
}
else if (mask & RESAMPLER_SIMD_SSE)
{
#if defined(__SSE__)
sinc_resampler.process = resampler_sinc_process_sse;
#elif defined(__ARM_NEON__) && !defined(SINC_COEFF_LERP)
if (mask & RESAMPLER_SIMD_NEON)
#endif
}
else if (mask & RESAMPLER_SIMD_NEON && re->window_type != SINC_WINDOW_KAISER)
{
#if defined(__ARM_NEON__)
sinc_resampler.process = resampler_sinc_process_neon;
#endif
}
return re;

View File

@ -47,6 +47,16 @@ RETRO_BEGIN_DECLS
#define RESAMPLER_SIMD_VFPU (1 << 13)
#define RESAMPLER_SIMD_PS (1 << 14)
enum resampler_quality
{
RESAMPLER_QUALITY_DONTCARE = 0,
RESAMPLER_QUALITY_LOWEST,
RESAMPLER_QUALITY_LOWER,
RESAMPLER_QUALITY_NORMAL,
RESAMPLER_QUALITY_HIGHER,
RESAMPLER_QUALITY_HIGHEST
};
/* A bit-mask of all supported SIMD instruction sets.
* Allows an implementation to pick different
* resampler_implementation structs.