mirror of
https://gitlab.com/OpenMW/openmw.git
synced 2025-01-18 04:10:06 +00:00
d1fb854521
esm typo esm typo
1276 lines
55 KiB
C++
1276 lines
55 KiB
C++
#include "weather.hpp"
|
|
|
|
#include <components/misc/rng.hpp>
|
|
|
|
#include <components/esm3/esmreader.hpp>
|
|
#include <components/esm3/esmwriter.hpp>
|
|
#include <components/esm3/weatherstate.hpp>
|
|
|
|
#include "../mwbase/environment.hpp"
|
|
#include "../mwbase/soundmanager.hpp"
|
|
|
|
#include "../mwmechanics/actorutil.hpp"
|
|
|
|
#include "../mwsound/sound.hpp"
|
|
|
|
#include "../mwrender/renderingmanager.hpp"
|
|
#include "../mwrender/sky.hpp"
|
|
|
|
#include "player.hpp"
|
|
#include "esmstore.hpp"
|
|
#include "cellstore.hpp"
|
|
|
|
#include <cmath>
|
|
|
|
namespace
|
|
{
|
|
static const int invalidWeatherID = -1;
|
|
|
|
// linear interpolate between x and y based on factor.
|
|
float lerp (float x, float y, float factor)
|
|
{
|
|
return x * (1-factor) + y * factor;
|
|
}
|
|
// linear interpolate between x and y based on factor.
|
|
osg::Vec4f lerp (const osg::Vec4f& x, const osg::Vec4f& y, float factor)
|
|
{
|
|
return x * (1-factor) + y * factor;
|
|
}
|
|
|
|
osg::Vec3f calculateStormDirection(const std::string& particleEffect)
|
|
{
|
|
osg::Vec3f stormDirection = MWWorld::Weather::defaultDirection();
|
|
if (particleEffect == "meshes\\ashcloud.nif" || particleEffect == "meshes\\blightcloud.nif")
|
|
{
|
|
osg::Vec3f playerPos = MWMechanics::getPlayer().getRefData().getPosition().asVec3();
|
|
playerPos.z() = 0;
|
|
osg::Vec3f redMountainPos = osg::Vec3f(25000.f, 70000.f, 0.f);
|
|
stormDirection = (playerPos - redMountainPos);
|
|
stormDirection.normalize();
|
|
}
|
|
return stormDirection;
|
|
}
|
|
}
|
|
|
|
namespace MWWorld
|
|
{
|
|
template <typename T>
|
|
T TimeOfDayInterpolator<T>::getValue(const float gameHour, const TimeOfDaySettings& timeSettings, const std::string& prefix) const
|
|
{
|
|
WeatherSetting setting = timeSettings.getSetting(prefix);
|
|
float preSunriseTime = setting.mPreSunriseTime;
|
|
float postSunriseTime = setting.mPostSunriseTime;
|
|
float preSunsetTime = setting.mPreSunsetTime;
|
|
float postSunsetTime = setting.mPostSunsetTime;
|
|
|
|
// night
|
|
if (gameHour < timeSettings.mNightEnd - preSunriseTime || gameHour > timeSettings.mNightStart + postSunsetTime)
|
|
return mNightValue;
|
|
// sunrise
|
|
else if (gameHour >= timeSettings.mNightEnd - preSunriseTime && gameHour <= timeSettings.mDayStart + postSunriseTime)
|
|
{
|
|
float duration = timeSettings.mDayStart + postSunriseTime - timeSettings.mNightEnd + preSunriseTime;
|
|
float middle = timeSettings.mNightEnd - preSunriseTime + duration / 2.f;
|
|
|
|
if (gameHour <= middle)
|
|
{
|
|
// fade in
|
|
float advance = middle - gameHour;
|
|
float factor = 0.f;
|
|
if (duration > 0)
|
|
factor = advance / duration * 2;
|
|
return lerp(mSunriseValue, mNightValue, factor);
|
|
}
|
|
else
|
|
{
|
|
// fade out
|
|
float advance = gameHour - middle;
|
|
float factor = 1.f;
|
|
if (duration > 0)
|
|
factor = advance / duration * 2;
|
|
return lerp(mSunriseValue, mDayValue, factor);
|
|
}
|
|
}
|
|
// day
|
|
else if (gameHour > timeSettings.mDayStart + postSunriseTime && gameHour < timeSettings.mDayEnd - preSunsetTime)
|
|
return mDayValue;
|
|
// sunset
|
|
else if (gameHour >= timeSettings.mDayEnd - preSunsetTime && gameHour <= timeSettings.mNightStart + postSunsetTime)
|
|
{
|
|
float duration = timeSettings.mNightStart + postSunsetTime - timeSettings.mDayEnd + preSunsetTime;
|
|
float middle = timeSettings.mDayEnd - preSunsetTime + duration / 2.f;
|
|
|
|
if (gameHour <= middle)
|
|
{
|
|
// fade in
|
|
float advance = middle - gameHour;
|
|
float factor = 0.f;
|
|
if (duration > 0)
|
|
factor = advance / duration * 2;
|
|
return lerp(mSunsetValue, mDayValue, factor);
|
|
}
|
|
else
|
|
{
|
|
// fade out
|
|
float advance = gameHour - middle;
|
|
float factor = 1.f;
|
|
if (duration > 0)
|
|
factor = advance / duration * 2;
|
|
return lerp(mSunsetValue, mNightValue, factor);
|
|
}
|
|
}
|
|
// shut up compiler
|
|
return T();
|
|
}
|
|
|
|
template class MWWorld::TimeOfDayInterpolator<float>;
|
|
template class MWWorld::TimeOfDayInterpolator<osg::Vec4f>;
|
|
|
|
osg::Vec3f Weather::defaultDirection()
|
|
{
|
|
static const osg::Vec3f direction = osg::Vec3f(0.f, 1.f, 0.f);
|
|
return direction;
|
|
}
|
|
|
|
Weather::Weather(const std::string& name,
|
|
float stormWindSpeed,
|
|
float rainSpeed,
|
|
float dlFactor,
|
|
float dlOffset,
|
|
const std::string& particleEffect)
|
|
: mCloudTexture(Fallback::Map::getString("Weather_" + name + "_Cloud_Texture"))
|
|
, mSkyColor(Fallback::Map::getColour("Weather_" + name +"_Sky_Sunrise_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sky_Day_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sky_Sunset_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sky_Night_Color"))
|
|
, mFogColor(Fallback::Map::getColour("Weather_" + name + "_Fog_Sunrise_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Fog_Day_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Fog_Sunset_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Fog_Night_Color"))
|
|
, mAmbientColor(Fallback::Map::getColour("Weather_" + name + "_Ambient_Sunrise_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Ambient_Day_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Ambient_Sunset_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Ambient_Night_Color"))
|
|
, mSunColor(Fallback::Map::getColour("Weather_" + name + "_Sun_Sunrise_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sun_Day_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sun_Sunset_Color"),
|
|
Fallback::Map::getColour("Weather_" + name + "_Sun_Night_Color"))
|
|
, mLandFogDepth(Fallback::Map::getFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
|
|
Fallback::Map::getFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
|
|
Fallback::Map::getFloat("Weather_" + name + "_Land_Fog_Day_Depth"),
|
|
Fallback::Map::getFloat("Weather_" + name + "_Land_Fog_Night_Depth"))
|
|
, mSunDiscSunsetColor(Fallback::Map::getColour("Weather_" + name + "_Sun_Disc_Sunset_Color"))
|
|
, mWindSpeed(Fallback::Map::getFloat("Weather_" + name + "_Wind_Speed"))
|
|
, mCloudSpeed(Fallback::Map::getFloat("Weather_" + name + "_Cloud_Speed"))
|
|
, mGlareView(Fallback::Map::getFloat("Weather_" + name + "_Glare_View"))
|
|
, mIsStorm(mWindSpeed > stormWindSpeed)
|
|
, mRainSpeed(rainSpeed)
|
|
, mRainEntranceSpeed(Fallback::Map::getFloat("Weather_" + name + "_Rain_Entrance_Speed"))
|
|
, mRainMaxRaindrops(Fallback::Map::getFloat("Weather_" + name + "_Max_Raindrops"))
|
|
, mRainDiameter(Fallback::Map::getFloat("Weather_" + name + "_Rain_Diameter"))
|
|
, mRainThreshold(Fallback::Map::getFloat("Weather_" + name + "_Rain_Threshold"))
|
|
, mRainMinHeight(Fallback::Map::getFloat("Weather_" + name + "_Rain_Height_Min"))
|
|
, mRainMaxHeight(Fallback::Map::getFloat("Weather_" + name + "_Rain_Height_Max"))
|
|
, mParticleEffect(particleEffect)
|
|
, mRainEffect(Fallback::Map::getBool("Weather_" + name + "_Using_Precip") ? "meshes\\raindrop.nif" : "")
|
|
, mStormDirection(Weather::defaultDirection())
|
|
, mTransitionDelta(Fallback::Map::getFloat("Weather_" + name + "_Transition_Delta"))
|
|
, mCloudsMaximumPercent(Fallback::Map::getFloat("Weather_" + name + "_Clouds_Maximum_Percent"))
|
|
, mThunderFrequency(Fallback::Map::getFloat("Weather_" + name + "_Thunder_Frequency"))
|
|
, mThunderThreshold(Fallback::Map::getFloat("Weather_" + name + "_Thunder_Threshold"))
|
|
, mThunderSoundID()
|
|
, mFlashDecrement(Fallback::Map::getFloat("Weather_" + name + "_Flash_Decrement"))
|
|
, mFlashBrightness(0.0f)
|
|
{
|
|
mDL.FogFactor = dlFactor;
|
|
mDL.FogOffset = dlOffset;
|
|
mThunderSoundID[0] = Fallback::Map::getString("Weather_" + name + "_Thunder_Sound_ID_0");
|
|
mThunderSoundID[1] = Fallback::Map::getString("Weather_" + name + "_Thunder_Sound_ID_1");
|
|
mThunderSoundID[2] = Fallback::Map::getString("Weather_" + name + "_Thunder_Sound_ID_2");
|
|
mThunderSoundID[3] = Fallback::Map::getString("Weather_" + name + "_Thunder_Sound_ID_3");
|
|
|
|
// TODO: support weathers that have both "Ambient Loop Sound ID" and "Rain Loop Sound ID", need to play both sounds at the same time.
|
|
|
|
if (!mRainEffect.empty()) // NOTE: in vanilla, the weathers with rain seem to be hardcoded; changing Using_Precip has no effect
|
|
{
|
|
mAmbientLoopSoundID = Fallback::Map::getString("Weather_" + name + "_Rain_Loop_Sound_ID");
|
|
if (mAmbientLoopSoundID.empty()) // default to "rain" if not set
|
|
mAmbientLoopSoundID = "rain";
|
|
}
|
|
else
|
|
mAmbientLoopSoundID = Fallback::Map::getString("Weather_" + name + "_Ambient_Loop_Sound_ID");
|
|
|
|
if (Misc::StringUtils::ciEqual(mAmbientLoopSoundID, "None"))
|
|
mAmbientLoopSoundID.clear();
|
|
}
|
|
|
|
float Weather::transitionDelta() const
|
|
{
|
|
// Transition Delta describes how quickly transitioning to the weather in question will take, in Hz. Note that the
|
|
// measurement is in real time, not in-game time.
|
|
return mTransitionDelta;
|
|
}
|
|
|
|
float Weather::cloudBlendFactor(const float transitionRatio) const
|
|
{
|
|
// Clouds Maximum Percent affects how quickly the sky transitions from one sky texture to the next.
|
|
return transitionRatio / mCloudsMaximumPercent;
|
|
}
|
|
|
|
float Weather::calculateThunder(const float transitionRatio, const float elapsedSeconds, const bool isPaused)
|
|
{
|
|
// When paused, the flash brightness remains the same and no new strikes can occur.
|
|
if(!isPaused)
|
|
{
|
|
// Morrowind doesn't appear to do any calculations unless the transition ratio is higher than the Thunder Threshold.
|
|
if(transitionRatio >= mThunderThreshold && mThunderFrequency > 0.0f)
|
|
{
|
|
flashDecrement(elapsedSeconds);
|
|
|
|
if(Misc::Rng::rollProbability() <= thunderChance(transitionRatio, elapsedSeconds))
|
|
{
|
|
lightningAndThunder();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mFlashBrightness = 0.0f;
|
|
}
|
|
}
|
|
|
|
return mFlashBrightness;
|
|
}
|
|
|
|
inline void Weather::flashDecrement(const float elapsedSeconds)
|
|
{
|
|
// The Flash Decrement is measured in whole units per second. This means that if the flash brightness was
|
|
// currently 1.0, then it should take approximately 0.25 seconds to decay to 0.0 (the minimum).
|
|
float decrement = mFlashDecrement * elapsedSeconds;
|
|
mFlashBrightness = decrement > mFlashBrightness ? 0.0f : mFlashBrightness - decrement;
|
|
}
|
|
|
|
inline float Weather::thunderChance(const float transitionRatio, const float elapsedSeconds) const
|
|
{
|
|
// This formula is reversed from the observation that with Thunder Frequency set to 1, there are roughly 10 strikes
|
|
// per minute. It doesn't appear to be tied to in game time as Timescale doesn't affect it. Various values of
|
|
// Thunder Frequency seem to change the average number of strikes in a linear fashion.. During a transition, it appears to
|
|
// scaled based on how far past it is past the Thunder Threshold.
|
|
float scaleFactor = (transitionRatio - mThunderThreshold) / (1.0f - mThunderThreshold);
|
|
return ((mThunderFrequency * 10.0f) / 60.0f) * elapsedSeconds * scaleFactor;
|
|
}
|
|
|
|
inline void Weather::lightningAndThunder(void)
|
|
{
|
|
// Morrowind seems to vary the intensity of the brightness based on which of the four sound IDs it selects.
|
|
// They appear to go from 0 (brightest, closest) to 3 (faintest, farthest). The value of 0.25 per distance
|
|
// was derived by setting the Flash Decrement to 0.1 and measuring how long each value took to decay to 0.
|
|
// TODO: Determine the distribution of each distance to see if it's evenly weighted.
|
|
unsigned int distance = Misc::Rng::rollDice(4);
|
|
// Flash brightness appears additive, since if multiple strikes occur, it takes longer for it to decay to 0.
|
|
mFlashBrightness += 1 - (distance * 0.25f);
|
|
MWBase::Environment::get().getSoundManager()->playSound(mThunderSoundID[distance], 1.0, 1.0);
|
|
}
|
|
|
|
RegionWeather::RegionWeather(const ESM::Region& region)
|
|
: mWeather(invalidWeatherID)
|
|
, mChances()
|
|
{
|
|
mChances.reserve(10);
|
|
mChances.push_back(region.mData.mClear);
|
|
mChances.push_back(region.mData.mCloudy);
|
|
mChances.push_back(region.mData.mFoggy);
|
|
mChances.push_back(region.mData.mOvercast);
|
|
mChances.push_back(region.mData.mRain);
|
|
mChances.push_back(region.mData.mThunder);
|
|
mChances.push_back(region.mData.mAsh);
|
|
mChances.push_back(region.mData.mBlight);
|
|
mChances.push_back(region.mData.mA);
|
|
mChances.push_back(region.mData.mB);
|
|
}
|
|
|
|
RegionWeather::RegionWeather(const ESM::RegionWeatherState& state)
|
|
: mWeather(state.mWeather)
|
|
, mChances(state.mChances)
|
|
{
|
|
}
|
|
|
|
RegionWeather::operator ESM::RegionWeatherState() const
|
|
{
|
|
ESM::RegionWeatherState state =
|
|
{
|
|
mWeather,
|
|
mChances
|
|
};
|
|
|
|
return state;
|
|
}
|
|
|
|
void RegionWeather::setChances(const std::vector<char>& chances)
|
|
{
|
|
if(mChances.size() < chances.size())
|
|
{
|
|
mChances.reserve(chances.size());
|
|
}
|
|
|
|
int i = 0;
|
|
for(char chance : chances)
|
|
{
|
|
mChances[i] = chance;
|
|
i++;
|
|
}
|
|
|
|
// Regional weather no longer supports the current type, select a new weather pattern.
|
|
if((static_cast<size_t>(mWeather) >= mChances.size()) || (mChances[mWeather] == 0))
|
|
{
|
|
chooseNewWeather();
|
|
}
|
|
}
|
|
|
|
void RegionWeather::setWeather(int weatherID)
|
|
{
|
|
mWeather = weatherID;
|
|
}
|
|
|
|
int RegionWeather::getWeather()
|
|
{
|
|
// If the region weather was already set (by ChangeWeather, or by a previous call) then just return that value.
|
|
// Note that the region weather will be expired periodically when the weather update timer expires.
|
|
if(mWeather == invalidWeatherID)
|
|
{
|
|
chooseNewWeather();
|
|
}
|
|
|
|
return mWeather;
|
|
}
|
|
|
|
void RegionWeather::chooseNewWeather()
|
|
{
|
|
// All probabilities must add to 100 (responsibility of the user).
|
|
// If chances A and B has values 30 and 70 then by generating 100 numbers 1..100, 30% will be lesser or equal 30
|
|
// and 70% will be greater than 30 (in theory).
|
|
int chance = Misc::Rng::rollDice(100) + 1; // 1..100
|
|
int sum = 0;
|
|
int i = 0;
|
|
for(; static_cast<size_t>(i) < mChances.size(); ++i)
|
|
{
|
|
sum += mChances[i];
|
|
if(chance <= sum)
|
|
{
|
|
mWeather = i;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// if we hit this path then the chances don't add to 100, choose a default weather instead
|
|
mWeather = 0;
|
|
}
|
|
|
|
MoonModel::MoonModel(const std::string& name)
|
|
: mFadeInStart(Fallback::Map::getFloat("Moons_" + name + "_Fade_In_Start"))
|
|
, mFadeInFinish(Fallback::Map::getFloat("Moons_" + name + "_Fade_In_Finish"))
|
|
, mFadeOutStart(Fallback::Map::getFloat("Moons_" + name + "_Fade_Out_Start"))
|
|
, mFadeOutFinish(Fallback::Map::getFloat("Moons_" + name + "_Fade_Out_Finish"))
|
|
, mAxisOffset(Fallback::Map::getFloat("Moons_" + name + "_Axis_Offset"))
|
|
, mSpeed(Fallback::Map::getFloat("Moons_" + name + "_Speed"))
|
|
, mDailyIncrement(Fallback::Map::getFloat("Moons_" + name + "_Daily_Increment"))
|
|
, mFadeStartAngle(Fallback::Map::getFloat("Moons_" + name + "_Fade_Start_Angle"))
|
|
, mFadeEndAngle(Fallback::Map::getFloat("Moons_" + name + "_Fade_End_Angle"))
|
|
, mMoonShadowEarlyFadeAngle(Fallback::Map::getFloat("Moons_" + name + "_Moon_Shadow_Early_Fade_Angle"))
|
|
{
|
|
// Morrowind appears to have a minimum speed in order to avoid situations where the moon couldn't conceivably
|
|
// complete a rotation in a single 24 hour period. The value of 180/23 was deduced from reverse engineering.
|
|
mSpeed = std::min(mSpeed, 180.0f / 23.0f);
|
|
}
|
|
|
|
MWRender::MoonState MoonModel::calculateState(const TimeStamp& gameTime) const
|
|
{
|
|
float rotationFromHorizon = angle(gameTime);
|
|
MWRender::MoonState state =
|
|
{
|
|
rotationFromHorizon,
|
|
mAxisOffset, // Reverse engineered from Morrowind's scene graph rotation matrices.
|
|
phase(gameTime),
|
|
shadowBlend(rotationFromHorizon),
|
|
earlyMoonShadowAlpha(rotationFromHorizon) * hourlyAlpha(gameTime.getHour())
|
|
};
|
|
|
|
return state;
|
|
}
|
|
|
|
inline float MoonModel::angle(const TimeStamp& gameTime) const
|
|
{
|
|
// Morrowind's moons start travel on one side of the horizon (let's call it H-rise) and travel 180 degrees to the
|
|
// opposite horizon (let's call it H-set). Upon reaching H-set, they reset to H-rise until the next moon rise.
|
|
|
|
// When calculating the angle of the moon, several cases have to be taken into account:
|
|
// 1. Moon rises and then sets in one day.
|
|
// 2. Moon sets and doesn't rise in one day (occurs when the moon rise hour is >= 24).
|
|
// 3. Moon sets and then rises in one day.
|
|
float moonRiseHourToday = moonRiseHour(gameTime.getDay());
|
|
float moonRiseAngleToday = 0;
|
|
|
|
if(gameTime.getHour() < moonRiseHourToday)
|
|
{
|
|
float moonRiseHourYesterday = moonRiseHour(gameTime.getDay() - 1);
|
|
if(moonRiseHourYesterday < 24)
|
|
{
|
|
float moonRiseAngleYesterday = rotation(24 - moonRiseHourYesterday);
|
|
if(moonRiseAngleYesterday < 180)
|
|
{
|
|
// The moon rose but did not set yesterday, so accumulate yesterday's angle with how much we've travelled today.
|
|
moonRiseAngleToday = rotation(gameTime.getHour()) + moonRiseAngleYesterday;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
moonRiseAngleToday = rotation(gameTime.getHour() - moonRiseHourToday);
|
|
}
|
|
|
|
if(moonRiseAngleToday >= 180)
|
|
{
|
|
// The moon set today, reset the angle to the horizon.
|
|
moonRiseAngleToday = 0;
|
|
}
|
|
|
|
return moonRiseAngleToday;
|
|
}
|
|
|
|
inline float MoonModel::moonRiseHour(unsigned int daysPassed) const
|
|
{
|
|
// This arises from the start date of 16 Last Seed, 427
|
|
// TODO: Find an alternate formula that doesn't rely on this day being fixed.
|
|
static const unsigned int startDay = 16;
|
|
|
|
// This odd formula arises from the fact that on 16 Last Seed, 17 increments have occurred, meaning
|
|
// that upon starting a new game, it must only calculate the moon phase as far back as 1 Last Seed.
|
|
// Note that we don't modulo after adding the latest daily increment because other calculations need to
|
|
// know if doing so would cause the moon rise to be postponed until the next day (which happens when
|
|
// the moon rise hour is >= 24 in Morrowind).
|
|
return mDailyIncrement + std::fmod((daysPassed - 1 + startDay) * mDailyIncrement, 24.0f);
|
|
}
|
|
|
|
inline float MoonModel::rotation(float hours) const
|
|
{
|
|
// 15 degrees per hour was reverse engineered from the rotation matrices of the Morrowind scene graph.
|
|
// Note that this correlates to 360 / 24, which is a full rotation every 24 hours, so speed is a measure
|
|
// of whole rotations that could be completed in a day.
|
|
return 15.0f * mSpeed * hours;
|
|
}
|
|
|
|
MWRender::MoonState::Phase MoonModel::phase(const TimeStamp& gameTime) const
|
|
{
|
|
// Morrowind starts with a full moon on 16 Last Seed and then begins to wane 17 Last Seed, working on 3 day phase cycle.
|
|
|
|
// If the moon didn't rise yet today, use yesterday's moon phase.
|
|
if(gameTime.getHour() < moonRiseHour(gameTime.getDay()))
|
|
return static_cast<MWRender::MoonState::Phase>((gameTime.getDay() / 3) % 8);
|
|
else
|
|
return static_cast<MWRender::MoonState::Phase>(((gameTime.getDay() + 1) / 3) % 8);
|
|
}
|
|
|
|
inline float MoonModel::shadowBlend(float angle) const
|
|
{
|
|
// The Fade End Angle and Fade Start Angle describe a region where the moon transitions from a solid disk
|
|
// that is roughly the color of the sky, to a textured surface.
|
|
// Depending on the current angle, the following values describe the ratio between the textured moon
|
|
// and the solid disk:
|
|
// 1. From Fade End Angle 1 to Fade Start Angle 1 (during moon rise): 0..1
|
|
// 2. From Fade Start Angle 1 to Fade Start Angle 2 (between moon rise and moon set): 1 (textured)
|
|
// 3. From Fade Start Angle 2 to Fade End Angle 2 (during moon set): 1..0
|
|
// 4. From Fade End Angle 2 to Fade End Angle 1 (between moon set and moon rise): 0 (solid disk)
|
|
float fadeAngle = mFadeStartAngle - mFadeEndAngle;
|
|
float fadeEndAngle2 = 180.0f - mFadeEndAngle;
|
|
float fadeStartAngle2 = 180.0f - mFadeStartAngle;
|
|
if((angle >= mFadeEndAngle) && (angle < mFadeStartAngle))
|
|
return (angle - mFadeEndAngle) / fadeAngle;
|
|
else if((angle >= mFadeStartAngle) && (angle < fadeStartAngle2))
|
|
return 1.0f;
|
|
else if((angle >= fadeStartAngle2) && (angle < fadeEndAngle2))
|
|
return (fadeEndAngle2 - angle) / fadeAngle;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
inline float MoonModel::hourlyAlpha(float gameHour) const
|
|
{
|
|
// The Fade Out Start / Finish and Fade In Start / Finish describe the hours at which the moon
|
|
// appears and disappears.
|
|
// Depending on the current hour, the following values describe how transparent the moon is.
|
|
// 1. From Fade Out Start to Fade Out Finish: 1..0
|
|
// 2. From Fade Out Finish to Fade In Start: 0 (transparent)
|
|
// 3. From Fade In Start to Fade In Finish: 0..1
|
|
// 4. From Fade In Finish to Fade Out Start: 1 (solid)
|
|
if((gameHour >= mFadeOutStart) && (gameHour < mFadeOutFinish))
|
|
return (mFadeOutFinish - gameHour) / (mFadeOutFinish - mFadeOutStart);
|
|
else if((gameHour >= mFadeOutFinish) && (gameHour < mFadeInStart))
|
|
return 0.0f;
|
|
else if((gameHour >= mFadeInStart) && (gameHour < mFadeInFinish))
|
|
return (gameHour - mFadeInStart) / (mFadeInFinish - mFadeInStart);
|
|
else
|
|
return 1.0f;
|
|
}
|
|
|
|
inline float MoonModel::earlyMoonShadowAlpha(float angle) const
|
|
{
|
|
// The Moon Shadow Early Fade Angle describes an arc relative to Fade End Angle.
|
|
// Depending on the current angle, the following values describe how transparent the moon is.
|
|
// 1. From Moon Shadow Early Fade Angle 1 to Fade End Angle 1 (during moon rise): 0..1
|
|
// 2. From Fade End Angle 1 to Fade End Angle 2 (between moon rise and moon set): 1 (solid)
|
|
// 3. From Fade End Angle 2 to Moon Shadow Early Fade Angle 2 (during moon set): 1..0
|
|
// 4. From Moon Shadow Early Fade Angle 2 to Moon Shadow Early Fade Angle 1: 0 (transparent)
|
|
float moonShadowEarlyFadeAngle1 = mFadeEndAngle - mMoonShadowEarlyFadeAngle;
|
|
float fadeEndAngle2 = 180.0f - mFadeEndAngle;
|
|
float moonShadowEarlyFadeAngle2 = fadeEndAngle2 + mMoonShadowEarlyFadeAngle;
|
|
if((angle >= moonShadowEarlyFadeAngle1) && (angle < mFadeEndAngle))
|
|
return (angle - moonShadowEarlyFadeAngle1) / mMoonShadowEarlyFadeAngle;
|
|
else if((angle >= mFadeEndAngle) && (angle < fadeEndAngle2))
|
|
return 1.0f;
|
|
else if((angle >= fadeEndAngle2) && (angle < moonShadowEarlyFadeAngle2))
|
|
return (moonShadowEarlyFadeAngle2 - angle) / mMoonShadowEarlyFadeAngle;
|
|
else
|
|
return 0.0f;
|
|
}
|
|
|
|
WeatherManager::WeatherManager(MWRender::RenderingManager& rendering, MWWorld::ESMStore& store)
|
|
: mStore(store)
|
|
, mRendering(rendering)
|
|
, mSunriseTime(Fallback::Map::getFloat("Weather_Sunrise_Time"))
|
|
, mSunsetTime(Fallback::Map::getFloat("Weather_Sunset_Time"))
|
|
, mSunriseDuration(Fallback::Map::getFloat("Weather_Sunrise_Duration"))
|
|
, mSunsetDuration(Fallback::Map::getFloat("Weather_Sunset_Duration"))
|
|
, mSunPreSunsetTime(Fallback::Map::getFloat("Weather_Sun_Pre-Sunset_Time"))
|
|
, mNightFade(0, 0, 0, 1)
|
|
, mHoursBetweenWeatherChanges(Fallback::Map::getFloat("Weather_Hours_Between_Weather_Changes"))
|
|
, mRainSpeed(Fallback::Map::getFloat("Weather_Precip_Gravity"))
|
|
, mUnderwaterFog(Fallback::Map::getFloat("Water_UnderwaterSunriseFog"),
|
|
Fallback::Map::getFloat("Water_UnderwaterDayFog"),
|
|
Fallback::Map::getFloat("Water_UnderwaterSunsetFog"),
|
|
Fallback::Map::getFloat("Water_UnderwaterNightFog"))
|
|
, mWeatherSettings()
|
|
, mMasser("Masser")
|
|
, mSecunda("Secunda")
|
|
, mWindSpeed(0.f)
|
|
, mCurrentWindSpeed(0.f)
|
|
, mNextWindSpeed(0.f)
|
|
, mIsStorm(false)
|
|
, mPrecipitation(false)
|
|
, mStormDirection(Weather::defaultDirection())
|
|
, mCurrentRegion()
|
|
, mTimePassed(0)
|
|
, mFastForward(false)
|
|
, mWeatherUpdateTime(mHoursBetweenWeatherChanges)
|
|
, mTransitionFactor(0)
|
|
, mNightDayMode(Default)
|
|
, mCurrentWeather(0)
|
|
, mNextWeather(0)
|
|
, mQueuedWeather(0)
|
|
, mRegions()
|
|
, mResult()
|
|
, mAmbientSound(nullptr)
|
|
, mPlayingSoundID()
|
|
{
|
|
mTimeSettings.mNightStart = mSunsetTime + mSunsetDuration;
|
|
mTimeSettings.mNightEnd = mSunriseTime;
|
|
mTimeSettings.mDayStart = mSunriseTime + mSunriseDuration;
|
|
mTimeSettings.mDayEnd = mSunsetTime;
|
|
|
|
mTimeSettings.addSetting("Sky");
|
|
mTimeSettings.addSetting("Ambient");
|
|
mTimeSettings.addSetting("Fog");
|
|
mTimeSettings.addSetting("Sun");
|
|
|
|
// Morrowind handles stars settings differently for other ones
|
|
mTimeSettings.mStarsPostSunsetStart = Fallback::Map::getFloat("Weather_Stars_Post-Sunset_Start");
|
|
mTimeSettings.mStarsPreSunriseFinish = Fallback::Map::getFloat("Weather_Stars_Pre-Sunrise_Finish");
|
|
mTimeSettings.mStarsFadingDuration = Fallback::Map::getFloat("Weather_Stars_Fading_Duration");
|
|
|
|
WeatherSetting starSetting = {
|
|
mTimeSettings.mStarsPreSunriseFinish,
|
|
mTimeSettings.mStarsFadingDuration - mTimeSettings.mStarsPreSunriseFinish,
|
|
mTimeSettings.mStarsPostSunsetStart,
|
|
mTimeSettings.mStarsFadingDuration - mTimeSettings.mStarsPostSunsetStart
|
|
};
|
|
|
|
mTimeSettings.mSunriseTransitions["Stars"] = starSetting;
|
|
|
|
mWeatherSettings.reserve(10);
|
|
// These distant land fog factor and offset values are the defaults MGE XE provides. Should be
|
|
// provided by settings somewhere?
|
|
addWeather("Clear", 1.0f, 0.0f); // 0
|
|
addWeather("Cloudy", 0.9f, 0.0f); // 1
|
|
addWeather("Foggy", 0.2f, 30.0f); // 2
|
|
addWeather("Overcast", 0.7f, 0.0f); // 3
|
|
addWeather("Rain", 0.5f, 10.0f); // 4
|
|
addWeather("Thunderstorm", 0.5f, 20.0f); // 5
|
|
addWeather("Ashstorm", 0.2f, 50.0f, "meshes\\ashcloud.nif"); // 6
|
|
addWeather("Blight", 0.2f, 60.0f, "meshes\\blightcloud.nif"); // 7
|
|
addWeather("Snow", 0.5f, 40.0f, "meshes\\snow.nif"); // 8
|
|
addWeather("Blizzard", 0.16f, 70.0f, "meshes\\blizzard.nif"); // 9
|
|
|
|
Store<ESM::Region>::iterator it = store.get<ESM::Region>().begin();
|
|
for(; it != store.get<ESM::Region>().end(); ++it)
|
|
{
|
|
std::string regionID = Misc::StringUtils::lowerCase(it->mId);
|
|
mRegions.insert(std::make_pair(regionID, RegionWeather(*it)));
|
|
}
|
|
|
|
forceWeather(0);
|
|
}
|
|
|
|
WeatherManager::~WeatherManager()
|
|
{
|
|
stopSounds();
|
|
}
|
|
|
|
void WeatherManager::changeWeather(const std::string& regionID, const unsigned int weatherID)
|
|
{
|
|
// In Morrowind, this seems to have the following behavior, when applied to the current region:
|
|
// - When there is no transition in progress, start transitioning to the new weather.
|
|
// - If there is a transition in progress, queue up the transition and process it when the current one completes.
|
|
// - If there is a transition in progress, and a queued transition, overwrite the queued transition.
|
|
// - If multiple calls to ChangeWeather are made while paused (console up), only the last call will be used,
|
|
// meaning that if there was no transition in progress, only the last ChangeWeather will be processed.
|
|
// If the region isn't current, Morrowind will store the new weather for the region in question.
|
|
|
|
if(weatherID < mWeatherSettings.size())
|
|
{
|
|
std::string lowerCaseRegionID = Misc::StringUtils::lowerCase(regionID);
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.find(lowerCaseRegionID);
|
|
if(it != mRegions.end())
|
|
{
|
|
it->second.setWeather(weatherID);
|
|
regionalWeatherChanged(it->first, it->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
void WeatherManager::modRegion(const std::string& regionID, const std::vector<char>& chances)
|
|
{
|
|
// Sets the region's probability for various weather patterns. Note that this appears to be saved permanently.
|
|
// In Morrowind, this seems to have the following behavior when applied to the current region:
|
|
// - If the region supports the current weather, no change in current weather occurs.
|
|
// - If the region no longer supports the current weather, and there is no transition in progress, begin to
|
|
// transition to a new supported weather type.
|
|
// - If the region no longer supports the current weather, and there is a transition in progress, queue a
|
|
// transition to a new supported weather type.
|
|
|
|
std::string lowerCaseRegionID = Misc::StringUtils::lowerCase(regionID);
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.find(lowerCaseRegionID);
|
|
if(it != mRegions.end())
|
|
{
|
|
it->second.setChances(chances);
|
|
regionalWeatherChanged(it->first, it->second);
|
|
}
|
|
}
|
|
|
|
void WeatherManager::playerTeleported(const std::string& playerRegion, bool isExterior)
|
|
{
|
|
// If the player teleports to an outdoors cell in a new region (for instance, by travelling), the weather needs to
|
|
// be changed immediately, and any transitions for the previous region discarded.
|
|
{
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.find(playerRegion);
|
|
if(it != mRegions.end() && playerRegion != mCurrentRegion)
|
|
{
|
|
mCurrentRegion = playerRegion;
|
|
forceWeather(it->second.getWeather());
|
|
}
|
|
}
|
|
}
|
|
|
|
float WeatherManager::calculateWindSpeed(int weatherId, float currentSpeed)
|
|
{
|
|
float targetSpeed = std::min(8.0f * mWeatherSettings[weatherId].mWindSpeed, 70.f);
|
|
if (currentSpeed == 0.f)
|
|
currentSpeed = targetSpeed;
|
|
|
|
float multiplier = mWeatherSettings[weatherId].mRainEffect.empty() ? 1.f : 0.5f;
|
|
float updatedSpeed = (Misc::Rng::rollClosedProbability() - 0.5f) * multiplier * targetSpeed + currentSpeed;
|
|
|
|
if (updatedSpeed > 0.5f * targetSpeed && updatedSpeed < 2.f * targetSpeed)
|
|
currentSpeed = updatedSpeed;
|
|
|
|
return currentSpeed;
|
|
}
|
|
|
|
void WeatherManager::update(float duration, bool paused, const TimeStamp& time, bool isExterior)
|
|
{
|
|
MWWorld::ConstPtr player = MWMechanics::getPlayer();
|
|
|
|
if(!paused || mFastForward)
|
|
{
|
|
// Add new transitions when either the player's current external region changes.
|
|
std::string playerRegion = Misc::StringUtils::lowerCase(player.getCell()->getCell()->mRegion);
|
|
if(updateWeatherTime() || updateWeatherRegion(playerRegion))
|
|
{
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.find(mCurrentRegion);
|
|
if(it != mRegions.end())
|
|
{
|
|
addWeatherTransition(it->second.getWeather());
|
|
}
|
|
}
|
|
|
|
updateWeatherTransitions(duration);
|
|
}
|
|
|
|
bool isDay = time.getHour() >= mSunriseTime && time.getHour() <= mTimeSettings.mNightStart;
|
|
if (isExterior && !isDay)
|
|
mNightDayMode = ExteriorNight;
|
|
else if (!isExterior && isDay && mWeatherSettings[mCurrentWeather].mGlareView >= 0.5f)
|
|
mNightDayMode = InteriorDay;
|
|
else
|
|
mNightDayMode = Default;
|
|
|
|
if(!isExterior)
|
|
{
|
|
mRendering.setSkyEnabled(false);
|
|
stopSounds();
|
|
mWindSpeed = 0.f;
|
|
mCurrentWindSpeed = 0.f;
|
|
mNextWindSpeed = 0.f;
|
|
return;
|
|
}
|
|
|
|
calculateWeatherResult(time.getHour(), duration, paused);
|
|
|
|
if (!paused)
|
|
{
|
|
mWindSpeed = mResult.mWindSpeed;
|
|
mCurrentWindSpeed = mResult.mCurrentWindSpeed;
|
|
mNextWindSpeed = mResult.mNextWindSpeed;
|
|
}
|
|
|
|
mIsStorm = mResult.mIsStorm;
|
|
|
|
// For some reason Ash Storm is not considered as a precipitation weather in game
|
|
mPrecipitation = !(mResult.mParticleEffect.empty() && mResult.mRainEffect.empty())
|
|
&& mResult.mParticleEffect != "meshes\\ashcloud.nif";
|
|
|
|
mStormDirection = calculateStormDirection(mResult.mParticleEffect);
|
|
mRendering.getSkyManager()->setStormParticleDirection(mStormDirection);
|
|
|
|
// disable sun during night
|
|
if (time.getHour() >= mTimeSettings.mNightStart || time.getHour() <= mSunriseTime)
|
|
mRendering.getSkyManager()->sunDisable();
|
|
else
|
|
mRendering.getSkyManager()->sunEnable();
|
|
|
|
// Update the sun direction. Run it east to west at a fixed angle from overhead.
|
|
// The sun's speed at day and night may differ, since mSunriseTime and mNightStart
|
|
// mark when the sun is level with the horizon.
|
|
{
|
|
// Shift times into a 24-hour window beginning at mSunriseTime...
|
|
float adjustedHour = time.getHour();
|
|
float adjustedNightStart = mTimeSettings.mNightStart;
|
|
if ( time.getHour() < mSunriseTime )
|
|
adjustedHour += 24.f;
|
|
if ( mTimeSettings.mNightStart < mSunriseTime )
|
|
adjustedNightStart += 24.f;
|
|
|
|
const bool is_night = adjustedHour >= adjustedNightStart;
|
|
const float dayDuration = adjustedNightStart - mSunriseTime;
|
|
const float nightDuration = 24.f - dayDuration;
|
|
|
|
double theta;
|
|
if ( !is_night )
|
|
{
|
|
theta = static_cast<float>(osg::PI) * (adjustedHour - mSunriseTime) / dayDuration;
|
|
}
|
|
else
|
|
{
|
|
theta = static_cast<float>(osg::PI) - static_cast<float>(osg::PI) * (adjustedHour - adjustedNightStart) / nightDuration;
|
|
}
|
|
|
|
osg::Vec3f final(
|
|
static_cast<float>(cos(theta)),
|
|
-0.268f, // approx tan( -15 degrees )
|
|
static_cast<float>(sin(theta)));
|
|
mRendering.setSunDirection( final * -1 );
|
|
}
|
|
|
|
float underwaterFog = mUnderwaterFog.getValue(time.getHour(), mTimeSettings, "Fog");
|
|
|
|
float peakHour = mSunriseTime + (mTimeSettings.mNightStart - mSunriseTime) / 2;
|
|
float glareFade = 1.f;
|
|
if (time.getHour() < mSunriseTime || time.getHour() > mTimeSettings.mNightStart)
|
|
glareFade = 0.f;
|
|
else if (time.getHour() < peakHour)
|
|
glareFade = 1.f - (peakHour - time.getHour()) / (peakHour - mSunriseTime);
|
|
else
|
|
glareFade = 1.f - (time.getHour() - peakHour) / (mTimeSettings.mNightStart - peakHour);
|
|
|
|
mRendering.getSkyManager()->setGlareTimeOfDayFade(glareFade);
|
|
|
|
mRendering.getSkyManager()->setMasserState(mMasser.calculateState(time));
|
|
mRendering.getSkyManager()->setSecundaState(mSecunda.calculateState(time));
|
|
|
|
mRendering.configureFog(mResult.mFogDepth, underwaterFog, mResult.mDLFogFactor,
|
|
mResult.mDLFogOffset/100.0f, mResult.mFogColor);
|
|
mRendering.setAmbientColour(mResult.mAmbientColor);
|
|
mRendering.setSunColour(mResult.mSunColor, mResult.mSunColor * mResult.mGlareView * glareFade);
|
|
|
|
mRendering.getSkyManager()->setWeather(mResult);
|
|
|
|
// Play sounds
|
|
if (mPlayingSoundID != mResult.mAmbientLoopSoundID)
|
|
{
|
|
stopSounds();
|
|
if (!mResult.mAmbientLoopSoundID.empty())
|
|
mAmbientSound = MWBase::Environment::get().getSoundManager()->playSound(
|
|
mResult.mAmbientLoopSoundID, mResult.mAmbientSoundVolume, 1.0,
|
|
MWSound::Type::Sfx, MWSound::PlayMode::Loop
|
|
);
|
|
mPlayingSoundID = mResult.mAmbientLoopSoundID;
|
|
}
|
|
else if (mAmbientSound)
|
|
mAmbientSound->setVolume(mResult.mAmbientSoundVolume);
|
|
}
|
|
|
|
void WeatherManager::stopSounds()
|
|
{
|
|
if (mAmbientSound)
|
|
MWBase::Environment::get().getSoundManager()->stopSound(mAmbientSound);
|
|
mAmbientSound = nullptr;
|
|
mPlayingSoundID.clear();
|
|
}
|
|
|
|
float WeatherManager::getWindSpeed() const
|
|
{
|
|
return mWindSpeed;
|
|
}
|
|
|
|
bool WeatherManager::isInStorm() const
|
|
{
|
|
return mIsStorm;
|
|
}
|
|
|
|
osg::Vec3f WeatherManager::getStormDirection() const
|
|
{
|
|
return mStormDirection;
|
|
}
|
|
|
|
void WeatherManager::advanceTime(double hours, bool incremental)
|
|
{
|
|
// In Morrowind, when the player sleeps/waits, serves jail time, travels, or trains, all weather transitions are
|
|
// immediately applied, regardless of whatever transition time might have been remaining.
|
|
mTimePassed += hours;
|
|
mFastForward = !incremental ? true : mFastForward;
|
|
}
|
|
|
|
unsigned int WeatherManager::getWeatherID() const
|
|
{
|
|
return mCurrentWeather;
|
|
}
|
|
|
|
NightDayMode WeatherManager::getNightDayMode() const
|
|
{
|
|
return mNightDayMode;
|
|
}
|
|
|
|
bool WeatherManager::useTorches(float hour) const
|
|
{
|
|
bool isDark = hour < mSunriseTime || hour > mTimeSettings.mNightStart;
|
|
|
|
return isDark && !mPrecipitation;
|
|
}
|
|
|
|
void WeatherManager::write(ESM::ESMWriter& writer, Loading::Listener& progress)
|
|
{
|
|
ESM::WeatherState state;
|
|
state.mCurrentRegion = mCurrentRegion;
|
|
state.mTimePassed = mTimePassed;
|
|
state.mFastForward = mFastForward;
|
|
state.mWeatherUpdateTime = mWeatherUpdateTime;
|
|
state.mTransitionFactor = mTransitionFactor;
|
|
state.mCurrentWeather = mCurrentWeather;
|
|
state.mNextWeather = mNextWeather;
|
|
state.mQueuedWeather = mQueuedWeather;
|
|
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.begin();
|
|
for(; it != mRegions.end(); ++it)
|
|
{
|
|
state.mRegions.insert(std::make_pair(it->first, it->second));
|
|
}
|
|
|
|
writer.startRecord(ESM::REC_WTHR);
|
|
state.save(writer);
|
|
writer.endRecord(ESM::REC_WTHR);
|
|
}
|
|
|
|
bool WeatherManager::readRecord(ESM::ESMReader& reader, uint32_t type)
|
|
{
|
|
if(ESM::REC_WTHR == type)
|
|
{
|
|
static const int oldestCompatibleSaveFormat = 2;
|
|
if(reader.getFormat() < oldestCompatibleSaveFormat)
|
|
{
|
|
// Weather state isn't really all that important, so to preserve older save games, we'll just discard the
|
|
// older weather records, rather than fail to handle the record.
|
|
reader.skipRecord();
|
|
}
|
|
else
|
|
{
|
|
ESM::WeatherState state;
|
|
state.load(reader);
|
|
|
|
mCurrentRegion.swap(state.mCurrentRegion);
|
|
mTimePassed = state.mTimePassed;
|
|
mFastForward = state.mFastForward;
|
|
mWeatherUpdateTime = state.mWeatherUpdateTime;
|
|
mTransitionFactor = state.mTransitionFactor;
|
|
mCurrentWeather = state.mCurrentWeather;
|
|
mNextWeather = state.mNextWeather;
|
|
mQueuedWeather = state.mQueuedWeather;
|
|
|
|
mRegions.clear();
|
|
importRegions();
|
|
|
|
for(std::map<std::string, ESM::RegionWeatherState>::iterator it = state.mRegions.begin(); it != state.mRegions.end(); ++it)
|
|
{
|
|
std::map<std::string, RegionWeather>::iterator found = mRegions.find(it->first);
|
|
if (found != mRegions.end())
|
|
{
|
|
found->second = RegionWeather(it->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void WeatherManager::clear()
|
|
{
|
|
stopSounds();
|
|
|
|
mCurrentRegion = "";
|
|
mTimePassed = 0.0f;
|
|
mWeatherUpdateTime = 0.0f;
|
|
forceWeather(0);
|
|
mRegions.clear();
|
|
importRegions();
|
|
}
|
|
|
|
inline void WeatherManager::addWeather(const std::string& name,
|
|
float dlFactor, float dlOffset,
|
|
const std::string& particleEffect)
|
|
{
|
|
static const float fStromWindSpeed = mStore.get<ESM::GameSetting>().find("fStromWindSpeed")->mValue.getFloat();
|
|
|
|
Weather weather(name, fStromWindSpeed, mRainSpeed, dlFactor, dlOffset, particleEffect);
|
|
|
|
mWeatherSettings.push_back(weather);
|
|
}
|
|
|
|
inline void WeatherManager::importRegions()
|
|
{
|
|
for(const ESM::Region& region : mStore.get<ESM::Region>())
|
|
{
|
|
std::string regionID = Misc::StringUtils::lowerCase(region.mId);
|
|
mRegions.insert(std::make_pair(regionID, RegionWeather(region)));
|
|
}
|
|
}
|
|
|
|
inline void WeatherManager::regionalWeatherChanged(const std::string& regionID, RegionWeather& region)
|
|
{
|
|
// If the region is current, then add a weather transition for it.
|
|
MWWorld::ConstPtr player = MWMechanics::getPlayer();
|
|
if(player.isInCell())
|
|
{
|
|
if(Misc::StringUtils::ciEqual(regionID, mCurrentRegion))
|
|
{
|
|
addWeatherTransition(region.getWeather());
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool WeatherManager::updateWeatherTime()
|
|
{
|
|
mWeatherUpdateTime -= mTimePassed;
|
|
mTimePassed = 0.0f;
|
|
if(mWeatherUpdateTime <= 0.0f)
|
|
{
|
|
// Expire all regional weather, so that any call to getWeather() will return a new weather ID.
|
|
std::map<std::string, RegionWeather>::iterator it = mRegions.begin();
|
|
for(; it != mRegions.end(); ++it)
|
|
{
|
|
it->second.setWeather(invalidWeatherID);
|
|
}
|
|
|
|
mWeatherUpdateTime += mHoursBetweenWeatherChanges;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool WeatherManager::updateWeatherRegion(const std::string& playerRegion)
|
|
{
|
|
if(!playerRegion.empty() && playerRegion != mCurrentRegion)
|
|
{
|
|
mCurrentRegion = playerRegion;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline void WeatherManager::updateWeatherTransitions(const float elapsedRealSeconds)
|
|
{
|
|
// When a player chooses to train, wait, or serves jail time, any transitions will be fast forwarded to the last
|
|
// weather type set, regardless of the remaining transition time.
|
|
if(!mFastForward && inTransition())
|
|
{
|
|
const float delta = mWeatherSettings[mNextWeather].transitionDelta();
|
|
mTransitionFactor -= elapsedRealSeconds * delta;
|
|
if(mTransitionFactor <= 0.0f)
|
|
{
|
|
mCurrentWeather = mNextWeather;
|
|
mNextWeather = mQueuedWeather;
|
|
mQueuedWeather = invalidWeatherID;
|
|
|
|
// We may have begun processing the queued transition, so we need to apply the remaining time towards it.
|
|
if(inTransition())
|
|
{
|
|
const float newDelta = mWeatherSettings[mNextWeather].transitionDelta();
|
|
const float remainingSeconds = -(mTransitionFactor / delta);
|
|
mTransitionFactor = 1.0f - (remainingSeconds * newDelta);
|
|
}
|
|
else
|
|
{
|
|
mTransitionFactor = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(mQueuedWeather != invalidWeatherID)
|
|
{
|
|
mCurrentWeather = mQueuedWeather;
|
|
}
|
|
else if(mNextWeather != invalidWeatherID)
|
|
{
|
|
mCurrentWeather = mNextWeather;
|
|
}
|
|
|
|
mNextWeather = invalidWeatherID;
|
|
mQueuedWeather = invalidWeatherID;
|
|
mFastForward = false;
|
|
}
|
|
}
|
|
|
|
inline void WeatherManager::forceWeather(const int weatherID)
|
|
{
|
|
mTransitionFactor = 0.0f;
|
|
mCurrentWeather = weatherID;
|
|
mNextWeather = invalidWeatherID;
|
|
mQueuedWeather = invalidWeatherID;
|
|
}
|
|
|
|
inline bool WeatherManager::inTransition()
|
|
{
|
|
return mNextWeather != invalidWeatherID;
|
|
}
|
|
|
|
inline void WeatherManager::addWeatherTransition(const int weatherID)
|
|
{
|
|
// In order to work like ChangeWeather expects, this method begins transitioning to the new weather immediately if
|
|
// no transition is in progress, otherwise it queues it to be transitioned.
|
|
|
|
assert(weatherID >= 0 && static_cast<size_t>(weatherID) < mWeatherSettings.size());
|
|
|
|
if(!inTransition() && (weatherID != mCurrentWeather))
|
|
{
|
|
mNextWeather = weatherID;
|
|
mTransitionFactor = 1.0f;
|
|
}
|
|
else if(inTransition() && (weatherID != mNextWeather))
|
|
{
|
|
mQueuedWeather = weatherID;
|
|
}
|
|
}
|
|
|
|
inline void WeatherManager::calculateWeatherResult(const float gameHour,
|
|
const float elapsedSeconds,
|
|
const bool isPaused)
|
|
{
|
|
float flash = 0.0f;
|
|
if(!inTransition())
|
|
{
|
|
calculateResult(mCurrentWeather, gameHour);
|
|
flash = mWeatherSettings[mCurrentWeather].calculateThunder(1.0f, elapsedSeconds, isPaused);
|
|
}
|
|
else
|
|
{
|
|
calculateTransitionResult(1 - mTransitionFactor, gameHour);
|
|
float currentFlash = mWeatherSettings[mCurrentWeather].calculateThunder(mTransitionFactor,
|
|
elapsedSeconds,
|
|
isPaused);
|
|
float nextFlash = mWeatherSettings[mNextWeather].calculateThunder(1 - mTransitionFactor,
|
|
elapsedSeconds,
|
|
isPaused);
|
|
flash = currentFlash + nextFlash;
|
|
}
|
|
osg::Vec4f flashColor(flash, flash, flash, 0.0f);
|
|
|
|
mResult.mFogColor += flashColor;
|
|
mResult.mAmbientColor += flashColor;
|
|
mResult.mSunColor += flashColor;
|
|
}
|
|
|
|
inline void WeatherManager::calculateResult(const int weatherID, const float gameHour)
|
|
{
|
|
const Weather& current = mWeatherSettings[weatherID];
|
|
|
|
mResult.mCloudTexture = current.mCloudTexture;
|
|
mResult.mCloudBlendFactor = 0;
|
|
mResult.mNextWindSpeed = 0;
|
|
mResult.mWindSpeed = mResult.mCurrentWindSpeed = calculateWindSpeed(weatherID, mWindSpeed);
|
|
mResult.mBaseWindSpeed = mWeatherSettings[weatherID].mWindSpeed;
|
|
|
|
mResult.mCloudSpeed = current.mCloudSpeed;
|
|
mResult.mGlareView = current.mGlareView;
|
|
mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID;
|
|
mResult.mAmbientSoundVolume = 1.f;
|
|
mResult.mPrecipitationAlpha = 1.f;
|
|
|
|
mResult.mIsStorm = current.mIsStorm;
|
|
|
|
mResult.mRainSpeed = current.mRainSpeed;
|
|
mResult.mRainEntranceSpeed = current.mRainEntranceSpeed;
|
|
mResult.mRainDiameter = current.mRainDiameter;
|
|
mResult.mRainMinHeight = current.mRainMinHeight;
|
|
mResult.mRainMaxHeight = current.mRainMaxHeight;
|
|
mResult.mRainMaxRaindrops = current.mRainMaxRaindrops;
|
|
|
|
mResult.mParticleEffect = current.mParticleEffect;
|
|
mResult.mRainEffect = current.mRainEffect;
|
|
|
|
mResult.mNight = (gameHour < mSunriseTime || gameHour > mTimeSettings.mNightStart + mTimeSettings.mStarsPostSunsetStart - mTimeSettings.mStarsFadingDuration);
|
|
|
|
mResult.mFogDepth = current.mLandFogDepth.getValue(gameHour, mTimeSettings, "Fog");
|
|
mResult.mFogColor = current.mFogColor.getValue(gameHour, mTimeSettings, "Fog");
|
|
mResult.mAmbientColor = current.mAmbientColor.getValue(gameHour, mTimeSettings, "Ambient");
|
|
mResult.mSunColor = current.mSunColor.getValue(gameHour, mTimeSettings, "Sun");
|
|
mResult.mSkyColor = current.mSkyColor.getValue(gameHour, mTimeSettings, "Sky");
|
|
mResult.mNightFade = mNightFade.getValue(gameHour, mTimeSettings, "Stars");
|
|
mResult.mDLFogFactor = current.mDL.FogFactor;
|
|
mResult.mDLFogOffset = current.mDL.FogOffset;
|
|
|
|
WeatherSetting setting = mTimeSettings.getSetting("Sun");
|
|
float preSunsetTime = setting.mPreSunsetTime;
|
|
|
|
if (gameHour >= mTimeSettings.mDayEnd - preSunsetTime)
|
|
{
|
|
float factor = 1.f;
|
|
if (preSunsetTime > 0)
|
|
factor = (gameHour - (mTimeSettings.mDayEnd - preSunsetTime)) / preSunsetTime;
|
|
factor = std::min(1.f, factor);
|
|
mResult.mSunDiscColor = lerp(osg::Vec4f(1,1,1,1), current.mSunDiscSunsetColor, factor);
|
|
// The SunDiscSunsetColor in the INI isn't exactly the resulting color on screen, most likely because
|
|
// MW applied the color to the ambient term as well. After the ambient and emissive terms are added together, the fixed pipeline
|
|
// would then clamp the total lighting to (1,1,1). A noticeable change in color tone can be observed when only one of the color components gets clamped.
|
|
// Unfortunately that means we can't use the INI color as is, have to replicate the above nonsense.
|
|
mResult.mSunDiscColor = mResult.mSunDiscColor + osg::componentMultiply(mResult.mSunDiscColor, mResult.mAmbientColor);
|
|
for (int i=0; i<3; ++i)
|
|
mResult.mSunDiscColor[i] = std::min(1.f, mResult.mSunDiscColor[i]);
|
|
}
|
|
else
|
|
mResult.mSunDiscColor = osg::Vec4f(1,1,1,1);
|
|
|
|
if (gameHour >= mTimeSettings.mDayEnd)
|
|
{
|
|
// sunset
|
|
float fade = std::min(1.f, (gameHour - mTimeSettings.mDayEnd) / (mTimeSettings.mNightStart - mTimeSettings.mDayEnd));
|
|
fade = fade*fade;
|
|
mResult.mSunDiscColor.a() = 1.f - fade;
|
|
}
|
|
else if (gameHour >= mTimeSettings.mNightEnd && gameHour <= mTimeSettings.mNightEnd + mSunriseDuration / 2.f)
|
|
{
|
|
// sunrise
|
|
mResult.mSunDiscColor.a() = gameHour - mTimeSettings.mNightEnd;
|
|
}
|
|
else
|
|
mResult.mSunDiscColor.a() = 1;
|
|
|
|
mResult.mStormDirection = calculateStormDirection(mResult.mParticleEffect);
|
|
}
|
|
|
|
inline void WeatherManager::calculateTransitionResult(const float factor, const float gameHour)
|
|
{
|
|
calculateResult(mCurrentWeather, gameHour);
|
|
const MWRender::WeatherResult current = mResult;
|
|
calculateResult(mNextWeather, gameHour);
|
|
const MWRender::WeatherResult other = mResult;
|
|
|
|
mResult.mStormDirection = current.mStormDirection;
|
|
mResult.mNextStormDirection = other.mStormDirection;
|
|
|
|
mResult.mCloudTexture = current.mCloudTexture;
|
|
mResult.mNextCloudTexture = other.mCloudTexture;
|
|
mResult.mCloudBlendFactor = mWeatherSettings[mNextWeather].cloudBlendFactor(factor);
|
|
|
|
mResult.mFogColor = lerp(current.mFogColor, other.mFogColor, factor);
|
|
mResult.mSunColor = lerp(current.mSunColor, other.mSunColor, factor);
|
|
mResult.mSkyColor = lerp(current.mSkyColor, other.mSkyColor, factor);
|
|
|
|
mResult.mAmbientColor = lerp(current.mAmbientColor, other.mAmbientColor, factor);
|
|
mResult.mSunDiscColor = lerp(current.mSunDiscColor, other.mSunDiscColor, factor);
|
|
mResult.mFogDepth = lerp(current.mFogDepth, other.mFogDepth, factor);
|
|
mResult.mDLFogFactor = lerp(current.mDLFogFactor, other.mDLFogFactor, factor);
|
|
mResult.mDLFogOffset = lerp(current.mDLFogOffset, other.mDLFogOffset, factor);
|
|
|
|
mResult.mCurrentWindSpeed = calculateWindSpeed(mCurrentWeather, mCurrentWindSpeed);
|
|
mResult.mNextWindSpeed = calculateWindSpeed(mNextWeather, mNextWindSpeed);
|
|
mResult.mBaseWindSpeed = lerp(current.mBaseWindSpeed, other.mBaseWindSpeed, factor);
|
|
|
|
mResult.mWindSpeed = lerp(mResult.mCurrentWindSpeed, mResult.mNextWindSpeed, factor);
|
|
mResult.mCloudSpeed = lerp(current.mCloudSpeed, other.mCloudSpeed, factor);
|
|
mResult.mGlareView = lerp(current.mGlareView, other.mGlareView, factor);
|
|
mResult.mNightFade = lerp(current.mNightFade, other.mNightFade, factor);
|
|
|
|
mResult.mNight = current.mNight;
|
|
|
|
float threshold = mWeatherSettings[mNextWeather].mRainThreshold;
|
|
if (threshold <= 0.f)
|
|
threshold = 0.5f;
|
|
|
|
if(factor < threshold)
|
|
{
|
|
mResult.mIsStorm = current.mIsStorm;
|
|
mResult.mParticleEffect = current.mParticleEffect;
|
|
mResult.mRainEffect = current.mRainEffect;
|
|
mResult.mRainSpeed = current.mRainSpeed;
|
|
mResult.mRainEntranceSpeed = current.mRainEntranceSpeed;
|
|
mResult.mAmbientSoundVolume = 1.f - factor / threshold;
|
|
mResult.mPrecipitationAlpha = mResult.mAmbientSoundVolume;
|
|
mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID;
|
|
mResult.mRainDiameter = current.mRainDiameter;
|
|
mResult.mRainMinHeight = current.mRainMinHeight;
|
|
mResult.mRainMaxHeight = current.mRainMaxHeight;
|
|
mResult.mRainMaxRaindrops = current.mRainMaxRaindrops;
|
|
}
|
|
else
|
|
{
|
|
mResult.mIsStorm = other.mIsStorm;
|
|
mResult.mParticleEffect = other.mParticleEffect;
|
|
mResult.mRainEffect = other.mRainEffect;
|
|
mResult.mRainSpeed = other.mRainSpeed;
|
|
mResult.mRainEntranceSpeed = other.mRainEntranceSpeed;
|
|
mResult.mAmbientSoundVolume = (factor - threshold) / (1 - threshold);
|
|
mResult.mPrecipitationAlpha = mResult.mAmbientSoundVolume;
|
|
mResult.mAmbientLoopSoundID = other.mAmbientLoopSoundID;
|
|
|
|
mResult.mRainDiameter = other.mRainDiameter;
|
|
mResult.mRainMinHeight = other.mRainMinHeight;
|
|
mResult.mRainMaxHeight = other.mRainMaxHeight;
|
|
mResult.mRainMaxRaindrops = other.mRainMaxRaindrops;
|
|
}
|
|
}
|
|
}
|
|
|