1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-26 18:35:20 +00:00
OpenMW/apps/openmw/mwphysics/physicssystem.cpp
2018-06-07 16:12:27 +04:00

1560 lines
62 KiB
C++

#include "physicssystem.hpp"
#include <iostream>
#include <stdexcept>
#include <osg/Group>
#include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h>
#include <BulletCollision/CollisionShapes/btConeShape.h>
#include <BulletCollision/CollisionShapes/btSphereShape.h>
#include <BulletCollision/CollisionShapes/btStaticPlaneShape.h>
#include <BulletCollision/CollisionShapes/btCompoundShape.h>
#include <BulletCollision/CollisionDispatch/btCollisionObject.h>
#include <BulletCollision/CollisionDispatch/btCollisionWorld.h>
#include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
#include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
#include <LinearMath/btQuickprof.h>
#include <components/nifbullet/bulletnifloader.hpp>
#include <components/resource/resourcesystem.hpp>
#include <components/resource/bulletshapemanager.hpp>
#include <components/esm/loadgmst.hpp>
#include <components/sceneutil/positionattitudetransform.hpp>
#include <components/sceneutil/unrefqueue.hpp>
#include <components/nifosg/particle.hpp> // FindRecIndexVisitor
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwmechanics/creaturestats.hpp"
#include "../mwmechanics/movement.hpp"
#include "../mwmechanics/actorutil.hpp"
#include "../mwworld/esmstore.hpp"
#include "../mwworld/cellstore.hpp"
#include "../mwrender/bulletdebugdraw.hpp"
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/class.hpp"
#include "collisiontype.hpp"
#include "actor.hpp"
#include "convert.hpp"
#include "trace.h"
namespace MWPhysics
{
static const float sMaxSlope = 49.0f;
static const float sStepSizeUp = 34.0f;
static const float sStepSizeDown = 62.0f;
static const float sMinStep = 10.f;
static const float sGroundOffset = 1.0f;
// Arbitrary number. To prevent infinite loops. They shouldn't happen but it's good to be prepared.
static const int sMaxIterations = 8;
static bool isActor(const btCollisionObject *obj)
{
assert(obj);
return obj->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor;
}
template <class Vec3>
static bool isWalkableSlope(const Vec3 &normal)
{
static const float sMaxSlopeCos = std::cos(osg::DegreesToRadians(sMaxSlope));
return (normal.z() > sMaxSlopeCos);
}
static bool canStepDown(const ActorTracer &stepper)
{
return stepper.mHitObject && isWalkableSlope(stepper.mPlaneNormal) && !isActor(stepper.mHitObject);
}
class Stepper
{
private:
const btCollisionWorld *mColWorld;
const btCollisionObject *mColObj;
ActorTracer mTracer, mUpStepper, mDownStepper;
bool mHaveMoved;
public:
Stepper(const btCollisionWorld *colWorld, const btCollisionObject *colObj)
: mColWorld(colWorld)
, mColObj(colObj)
, mHaveMoved(true)
{}
bool step(osg::Vec3f &position, const osg::Vec3f &toMove, float &remainingTime)
{
/*
* Slide up an incline or set of stairs. Should be called only after a
* collision detection otherwise unnecessary tracing will be performed.
*
* NOTE: with a small change this method can be used to step over an obstacle
* of height sStepSize.
*
* If successful return 'true' and update 'position' to the new possible
* location and adjust 'remainingTime'.
*
* If not successful return 'false'. May fail for these reasons:
* - can't move directly up from current position
* - having moved up by between epsilon() and sStepSize, can't move forward
* - having moved forward by between epsilon() and toMove,
* = moved down between 0 and just under sStepSize but slope was too steep, or
* = moved the full sStepSize down (FIXME: this could be a bug)
*
*
*
* Starting position. Obstacle or stairs with height upto sStepSize in front.
*
* +--+ +--+ |XX
* | | -------> toMove | | +--+XX
* | | | | |XXXXX
* | | +--+ | | +--+XXXXX
* | | |XX| | | |XXXXXXXX
* +--+ +--+ +--+ +--------
* ==============================================
*/
/*
* Try moving up sStepSize using stepper.
* FIXME: does not work in case there is no front obstacle but there is one above
*
* +--+ +--+
* | | | |
* | | | | |XX
* | | | | +--+XX
* | | | | |XXXXX
* +--+ +--+ +--+ +--+XXXXX
* |XX| |XXXXXXXX
* +--+ +--------
* ==============================================
*/
if (mHaveMoved)
{
mHaveMoved = false;
mUpStepper.doTrace(mColObj, position, position+osg::Vec3f(0.0f,0.0f,sStepSizeUp), mColWorld);
if(mUpStepper.mFraction < std::numeric_limits<float>::epsilon())
return false; // didn't even move the smallest representable amount
// (TODO: shouldn't this be larger? Why bother with such a small amount?)
}
/*
* Try moving from the elevated position using tracer.
*
* +--+ +--+
* | | |YY| FIXME: collision with object YY
* | | +--+
* | |
* <------------------->| |
* +--+ +--+
* |XX| the moved amount is toMove*tracer.mFraction
* +--+
* ==============================================
*/
osg::Vec3f tracerPos = mUpStepper.mEndPos;
mTracer.doTrace(mColObj, tracerPos, tracerPos + toMove, mColWorld);
if(mTracer.mFraction < std::numeric_limits<float>::epsilon())
return false; // didn't even move the smallest representable amount
/*
* Try moving back down sStepSizeDown using stepper.
* NOTE: if there is an obstacle below (e.g. stairs), we'll be "stepping up".
* Below diagram is the case where we "stepped over" an obstacle in front.
*
* +--+
* |YY|
* +--+ +--+
* | |
* | |
* +--+ | |
* |XX| | |
* +--+ +--+
* ==============================================
*/
mDownStepper.doTrace(mColObj, mTracer.mEndPos, mTracer.mEndPos-osg::Vec3f(0.0f,0.0f,sStepSizeDown), mColWorld);
if (!canStepDown(mDownStepper))
{
// Try again with increased step length
if (mTracer.mFraction < 1.0f || toMove.length2() > sMinStep*sMinStep)
return false;
osg::Vec3f direction = toMove;
direction.normalize();
mTracer.doTrace(mColObj, tracerPos, tracerPos + direction*sMinStep, mColWorld);
if (mTracer.mFraction < 0.001f)
return false;
mDownStepper.doTrace(mColObj, mTracer.mEndPos, mTracer.mEndPos-osg::Vec3f(0.0f,0.0f,sStepSizeDown), mColWorld);
if (!canStepDown(mDownStepper))
return false;
}
if (mDownStepper.mFraction < 1.0f)
{
// only step down onto semi-horizontal surfaces. don't step down onto the side of a house or a wall.
// TODO: stepper.mPlaneNormal does not appear to be reliable - needs more testing
// NOTE: caller's variables 'position' & 'remainingTime' are modified here
position = mDownStepper.mEndPos;
remainingTime *= (1.0f-mTracer.mFraction); // remaining time is proportional to remaining distance
mHaveMoved = true;
return true;
}
return false;
}
};
class MovementSolver
{
private:
///Project a vector u on another vector v
static inline osg::Vec3f project(const osg::Vec3f& u, const osg::Vec3f &v)
{
return v * (u * v);
// ^ dot product
}
///Helper for computing the character sliding
static inline osg::Vec3f slide(const osg::Vec3f& direction, const osg::Vec3f &planeNormal)
{
return direction - project(direction, planeNormal);
}
public:
static osg::Vec3f traceDown(const MWWorld::Ptr &ptr, const osg::Vec3f& position, Actor* actor, btCollisionWorld* collisionWorld, float maxHeight)
{
osg::Vec3f offset = actor->getCollisionObjectPosition() - ptr.getRefData().getPosition().asVec3();
ActorTracer tracer;
tracer.findGround(actor, position + offset, position + offset - osg::Vec3f(0,0,maxHeight), collisionWorld);
if(tracer.mFraction >= 1.0f)
{
actor->setOnGround(false);
return position;
}
else
{
actor->setOnGround(true);
// Check if we actually found a valid spawn point (use an infinitely thin ray this time).
// Required for some broken door destinations in Morrowind.esm, where the spawn point
// intersects with other geometry if the actor's base is taken into account
btVector3 from = toBullet(position);
btVector3 to = from - btVector3(0,0,maxHeight);
btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to);
resultCallback1.m_collisionFilterGroup = 0xff;
resultCallback1.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap;
collisionWorld->rayTest(from, to, resultCallback1);
if (resultCallback1.hasHit() &&
( (toOsg(resultCallback1.m_hitPointWorld) - (tracer.mEndPos-offset)).length2() > 35*35
|| !isWalkableSlope(tracer.mPlaneNormal)))
{
actor->setOnSlope(!isWalkableSlope(resultCallback1.m_hitNormalWorld));
return toOsg(resultCallback1.m_hitPointWorld) + osg::Vec3f(0.f, 0.f, sGroundOffset);
}
else
{
actor->setOnSlope(!isWalkableSlope(tracer.mPlaneNormal));
}
return tracer.mEndPos-offset + osg::Vec3f(0.f, 0.f, sGroundOffset);
}
}
static osg::Vec3f move(osg::Vec3f position, const MWWorld::Ptr &ptr, Actor* physicActor, const osg::Vec3f &movement, float time,
bool isFlying, float waterlevel, float slowFall, const btCollisionWorld* collisionWorld,
std::map<MWWorld::Ptr, MWWorld::Ptr>& standingCollisionTracker)
{
const ESM::Position& refpos = ptr.getRefData().getPosition();
// Early-out for totally static creatures
// (Not sure if gravity should still apply?)
if (!ptr.getClass().isMobile(ptr))
return position;
// Reset per-frame data
physicActor->setWalkingOnWater(false);
// Anything to collide with?
if(!physicActor->getCollisionMode())
{
return position + (osg::Quat(refpos.rot[0], osg::Vec3f(-1, 0, 0)) *
osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1))
) * movement * time;
}
const btCollisionObject *colobj = physicActor->getCollisionObject();
osg::Vec3f halfExtents = physicActor->getHalfExtents();
// NOTE: here we don't account for the collision box translation (i.e. physicActor->getPosition() - refpos.pos).
// That means the collision shape used for moving this actor is in a different spot than the collision shape
// other actors are using to collide against this actor.
// While this is strictly speaking wrong, it's needed for MW compatibility.
position.z() += halfExtents.z();
static const float fSwimHeightScale = MWBase::Environment::get().getWorld()->getStore().get<ESM::GameSetting>()
.find("fSwimHeightScale")->getFloat();
float swimlevel = waterlevel + halfExtents.z() - (physicActor->getRenderingHalfExtents().z() * 2 * fSwimHeightScale);
ActorTracer tracer;
osg::Vec3f inertia = physicActor->getInertialForce();
osg::Vec3f velocity;
if(position.z() < swimlevel || isFlying)
{
velocity = (osg::Quat(refpos.rot[0], osg::Vec3f(-1, 0, 0)) *
osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1))) * movement;
}
else
{
velocity = (osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1))) * movement;
if (velocity.z() > 0.f && physicActor->getOnGround() && !physicActor->getOnSlope())
inertia = velocity;
else if(!physicActor->getOnGround() || physicActor->getOnSlope())
velocity = velocity + physicActor->getInertialForce();
}
// dead actors underwater will float to the surface, if the CharacterController tells us to do so
if (movement.z() > 0 && ptr.getClass().getCreatureStats(ptr).isDead() && position.z() < swimlevel)
velocity = osg::Vec3f(0,0,1) * 25;
ptr.getClass().getMovementSettings(ptr).mPosition[2] = 0;
// Now that we have the effective movement vector, apply wind forces to it
if (MWBase::Environment::get().getWorld()->isInStorm())
{
osg::Vec3f stormDirection = MWBase::Environment::get().getWorld()->getStormDirection();
float angleDegrees = osg::RadiansToDegrees(std::acos(stormDirection * velocity / (stormDirection.length() * velocity.length())));
static const float fStromWalkMult = MWBase::Environment::get().getWorld()->getStore().get<ESM::GameSetting>()
.find("fStromWalkMult")->getFloat();
velocity *= 1.f-(fStromWalkMult * (angleDegrees/180.f));
}
Stepper stepper(collisionWorld, colobj);
osg::Vec3f origVelocity = velocity;
osg::Vec3f newPosition = position;
/*
* A loop to find newPosition using tracer, if successful different from the starting position.
* nextpos is the local variable used to find potential newPosition, using velocity and remainingTime
* The initial velocity was set earlier (see above).
*/
float remainingTime = time;
for(int iterations = 0; iterations < sMaxIterations && remainingTime > 0.01f; ++iterations)
{
osg::Vec3f nextpos = newPosition + velocity * remainingTime;
// If not able to fly, don't allow to swim up into the air
if(!isFlying && // can't fly
nextpos.z() > swimlevel && // but about to go above water
newPosition.z() < swimlevel)
{
const osg::Vec3f down(0,0,-1);
velocity = slide(velocity, down);
// NOTE: remainingTime is unchanged before the loop continues
continue; // velocity updated, calculate nextpos again
}
if((newPosition - nextpos).length2() > 0.0001)
{
// trace to where character would go if there were no obstructions
tracer.doTrace(colobj, newPosition, nextpos, collisionWorld);
// check for obstructions
if(tracer.mFraction >= 1.0f)
{
newPosition = tracer.mEndPos; // ok to move, so set newPosition
break;
}
}
else
{
// The current position and next position are nearly the same, so just exit.
// Note: Bullet can trigger an assert in debug modes if the positions
// are the same, since that causes it to attempt to normalize a zero
// length vector (which can also happen with nearly identical vectors, since
// precision can be lost due to any math Bullet does internally). Since we
// aren't performing any collision detection, we want to reject the next
// position, so that we don't slowly move inside another object.
break;
}
// We are touching something.
if (tracer.mFraction < 1E-9f)
{
// Try to separate by backing off slighly to unstuck the solver
osg::Vec3f backOff = (newPosition - tracer.mHitPoint) * 1E-2f;
newPosition += backOff;
}
// We hit something. Check if we can step up.
float hitHeight = tracer.mHitPoint.z() - tracer.mEndPos.z() + halfExtents.z();
osg::Vec3f oldPosition = newPosition;
bool result = false;
if (hitHeight < sStepSizeUp && !isActor(tracer.mHitObject))
{
// Try to step up onto it.
// NOTE: stepMove does not allow stepping over, modifies newPosition if successful
result = stepper.step(newPosition, velocity*remainingTime, remainingTime);
}
if (result)
{
// don't let pure water creatures move out of water after stepMove
if (ptr.getClass().isPureWaterCreature(ptr)
&& newPosition.z() + halfExtents.z() > waterlevel)
newPosition = oldPosition;
}
else
{
// Can't move this way, try to find another spot along the plane
osg::Vec3f newVelocity = slide(velocity, tracer.mPlaneNormal);
// Do not allow sliding upward if there is gravity.
// Stepping will have taken care of that.
if(!(newPosition.z() < swimlevel || isFlying))
newVelocity.z() = std::min(newVelocity.z(), 0.0f);
if ((newVelocity-velocity).length2() < 0.01)
break;
if ((newVelocity * origVelocity) <= 0.f)
break; // ^ dot product
velocity = newVelocity;
}
}
bool isOnGround = false;
bool isOnSlope = false;
if (!(inertia.z() > 0.f) && !(newPosition.z() < swimlevel))
{
osg::Vec3f from = newPosition;
osg::Vec3f to = newPosition - (physicActor->getOnGround() ?
osg::Vec3f(0,0,sStepSizeDown + 2*sGroundOffset) : osg::Vec3f(0,0,2*sGroundOffset));
tracer.doTrace(colobj, from, to, collisionWorld);
if(tracer.mFraction < 1.0f
&& tracer.mHitObject->getBroadphaseHandle()->m_collisionFilterGroup != CollisionType_Actor)
{
const btCollisionObject* standingOn = tracer.mHitObject;
PtrHolder* ptrHolder = static_cast<PtrHolder*>(standingOn->getUserPointer());
if (ptrHolder)
standingCollisionTracker[ptr] = ptrHolder->getPtr();
if (standingOn->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Water)
physicActor->setWalkingOnWater(true);
if (!isFlying)
newPosition.z() = tracer.mEndPos.z() + sGroundOffset;
isOnGround = true;
isOnSlope = !isWalkableSlope(tracer.mPlaneNormal);
}
else
{
// standing on actors is not allowed (see above).
// in addition to that, apply a sliding effect away from the center of the actor,
// so that we do not stay suspended in air indefinitely.
if (tracer.mFraction < 1.0f && tracer.mHitObject->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor)
{
if (osg::Vec3f(velocity.x(), velocity.y(), 0).length2() < 100.f*100.f)
{
btVector3 aabbMin, aabbMax;
tracer.mHitObject->getCollisionShape()->getAabb(tracer.mHitObject->getWorldTransform(), aabbMin, aabbMax);
btVector3 center = (aabbMin + aabbMax) / 2.f;
inertia = osg::Vec3f(position.x() - center.x(), position.y() - center.y(), 0);
inertia.normalize();
inertia *= 100;
}
}
isOnGround = false;
}
}
if((isOnGround && !isOnSlope) || newPosition.z() < swimlevel || isFlying)
physicActor->setInertialForce(osg::Vec3f(0.f, 0.f, 0.f));
else
{
inertia.z() += time * -627.2f;
if (inertia.z() < 0)
inertia.z() *= slowFall;
if (slowFall < 1.f) {
inertia.x() *= slowFall;
inertia.y() *= slowFall;
}
physicActor->setInertialForce(inertia);
}
physicActor->setOnGround(isOnGround);
physicActor->setOnSlope(isOnSlope);
newPosition.z() -= halfExtents.z(); // remove what was added at the beginning
return newPosition;
}
};
// ---------------------------------------------------------------
class HeightField
{
public:
HeightField(const float* heights, int x, int y, float triSize, float sqrtVerts, float minH, float maxH, const osg::Object* holdObject)
{
mShape = new btHeightfieldTerrainShape(
sqrtVerts, sqrtVerts, heights, 1,
minH, maxH, 2,
PHY_FLOAT, false
);
mShape->setUseDiamondSubdivision(true);
mShape->setLocalScaling(btVector3(triSize, triSize, 1));
btTransform transform(btQuaternion::getIdentity(),
btVector3((x+0.5f) * triSize * (sqrtVerts-1),
(y+0.5f) * triSize * (sqrtVerts-1),
(maxH+minH)*0.5f));
mCollisionObject = new btCollisionObject;
mCollisionObject->setCollisionShape(mShape);
mCollisionObject->setWorldTransform(transform);
mHoldObject = holdObject;
}
~HeightField()
{
delete mCollisionObject;
delete mShape;
}
btCollisionObject* getCollisionObject()
{
return mCollisionObject;
}
private:
btHeightfieldTerrainShape* mShape;
btCollisionObject* mCollisionObject;
osg::ref_ptr<const osg::Object> mHoldObject;
void operator=(const HeightField&);
HeightField(const HeightField&);
};
// --------------------------------------------------------------
class Object : public PtrHolder
{
public:
Object(const MWWorld::Ptr& ptr, osg::ref_ptr<Resource::BulletShapeInstance> shapeInstance)
: mShapeInstance(shapeInstance)
, mSolid(true)
{
mPtr = ptr;
mCollisionObject.reset(new btCollisionObject);
mCollisionObject->setCollisionShape(shapeInstance->getCollisionShape());
mCollisionObject->setUserPointer(static_cast<PtrHolder*>(this));
setScale(ptr.getCellRef().getScale());
setRotation(toBullet(ptr.getRefData().getBaseNode()->getAttitude()));
const float* pos = ptr.getRefData().getPosition().pos;
setOrigin(btVector3(pos[0], pos[1], pos[2]));
}
const Resource::BulletShapeInstance* getShapeInstance() const
{
return mShapeInstance.get();
}
void setScale(float scale)
{
mShapeInstance->getCollisionShape()->setLocalScaling(btVector3(scale,scale,scale));
}
void setRotation(const btQuaternion& quat)
{
mCollisionObject->getWorldTransform().setRotation(quat);
}
void setOrigin(const btVector3& vec)
{
mCollisionObject->getWorldTransform().setOrigin(vec);
}
btCollisionObject* getCollisionObject()
{
return mCollisionObject.get();
}
const btCollisionObject* getCollisionObject() const
{
return mCollisionObject.get();
}
/// Return solid flag. Not used by the object itself, true by default.
bool isSolid() const
{
return mSolid;
}
void setSolid(bool solid)
{
mSolid = solid;
}
bool isAnimated() const
{
return !mShapeInstance->mAnimatedShapes.empty();
}
void animateCollisionShapes(btCollisionWorld* collisionWorld)
{
if (mShapeInstance->mAnimatedShapes.empty())
return;
assert (mShapeInstance->getCollisionShape()->isCompound());
btCompoundShape* compound = static_cast<btCompoundShape*>(mShapeInstance->getCollisionShape());
for (std::map<int, int>::const_iterator it = mShapeInstance->mAnimatedShapes.begin(); it != mShapeInstance->mAnimatedShapes.end(); ++it)
{
int recIndex = it->first;
int shapeIndex = it->second;
std::map<int, osg::NodePath>::iterator nodePathFound = mRecIndexToNodePath.find(recIndex);
if (nodePathFound == mRecIndexToNodePath.end())
{
NifOsg::FindGroupByRecIndex visitor(recIndex);
mPtr.getRefData().getBaseNode()->accept(visitor);
if (!visitor.mFound)
{
std::cerr << "Error: animateCollisionShapes can't find node " << recIndex << " for " << mPtr.getCellRef().getRefId() << std::endl;
return;
}
osg::NodePath nodePath = visitor.mFoundPath;
nodePath.erase(nodePath.begin());
nodePathFound = mRecIndexToNodePath.insert(std::make_pair(recIndex, nodePath)).first;
}
osg::NodePath& nodePath = nodePathFound->second;
osg::Matrixf matrix = osg::computeLocalToWorld(nodePath);
osg::Vec3f scale = matrix.getScale();
matrix.orthoNormalize(matrix);
btTransform transform;
transform.setOrigin(toBullet(matrix.getTrans()) * compound->getLocalScaling());
for (int i=0; i<3; ++i)
for (int j=0; j<3; ++j)
transform.getBasis()[i][j] = matrix(j,i); // NB column/row major difference
if (compound->getLocalScaling() * toBullet(scale) != compound->getChildShape(shapeIndex)->getLocalScaling())
compound->getChildShape(shapeIndex)->setLocalScaling(compound->getLocalScaling() * toBullet(scale));
if (!(transform == compound->getChildTransform(shapeIndex)))
compound->updateChildTransform(shapeIndex, transform);
}
collisionWorld->updateSingleAabb(mCollisionObject.get());
}
private:
std::unique_ptr<btCollisionObject> mCollisionObject;
osg::ref_ptr<Resource::BulletShapeInstance> mShapeInstance;
std::map<int, osg::NodePath> mRecIndexToNodePath;
bool mSolid;
};
// ---------------------------------------------------------------
PhysicsSystem::PhysicsSystem(Resource::ResourceSystem* resourceSystem, osg::ref_ptr<osg::Group> parentNode)
: mShapeManager(new Resource::BulletShapeManager(resourceSystem->getVFS(), resourceSystem->getSceneManager(), resourceSystem->getNifFileManager()))
, mResourceSystem(resourceSystem)
, mDebugDrawEnabled(false)
, mTimeAccum(0.0f)
, mWaterHeight(0)
, mWaterEnabled(false)
, mParentNode(parentNode)
, mPhysicsDt(1.f / 60.f)
{
mResourceSystem->addResourceManager(mShapeManager.get());
mCollisionConfiguration = new btDefaultCollisionConfiguration();
mDispatcher = new btCollisionDispatcher(mCollisionConfiguration);
mBroadphase = new btDbvtBroadphase();
mCollisionWorld = new btCollisionWorld(mDispatcher, mBroadphase, mCollisionConfiguration);
// Don't update AABBs of all objects every frame. Most objects in MW are static, so we don't need this.
// Should a "static" object ever be moved, we have to update its AABB manually using DynamicsWorld::updateSingleAabb.
mCollisionWorld->setForceUpdateAllAabbs(false);
// Check if a user decided to override a physics system FPS
const char* env = getenv("OPENMW_PHYSICS_FPS");
if (env)
{
float physFramerate = std::atof(env);
if (physFramerate > 0)
{
mPhysicsDt = 1.f / physFramerate;
std::cerr << "Warning: physics framerate was overridden (a new value is " << physFramerate << ")." << std::endl;
}
}
}
PhysicsSystem::~PhysicsSystem()
{
mResourceSystem->removeResourceManager(mShapeManager.get());
if (mWaterCollisionObject.get())
mCollisionWorld->removeCollisionObject(mWaterCollisionObject.get());
for (HeightFieldMap::iterator it = mHeightFields.begin(); it != mHeightFields.end(); ++it)
{
mCollisionWorld->removeCollisionObject(it->second->getCollisionObject());
delete it->second;
}
for (ObjectMap::iterator it = mObjects.begin(); it != mObjects.end(); ++it)
{
mCollisionWorld->removeCollisionObject(it->second->getCollisionObject());
delete it->second;
}
for (ActorMap::iterator it = mActors.begin(); it != mActors.end(); ++it)
{
delete it->second;
}
delete mCollisionWorld;
delete mCollisionConfiguration;
delete mDispatcher;
delete mBroadphase;
}
void PhysicsSystem::setUnrefQueue(SceneUtil::UnrefQueue *unrefQueue)
{
mUnrefQueue = unrefQueue;
}
Resource::BulletShapeManager *PhysicsSystem::getShapeManager()
{
return mShapeManager.get();
}
bool PhysicsSystem::toggleDebugRendering()
{
mDebugDrawEnabled = !mDebugDrawEnabled;
if (mDebugDrawEnabled && !mDebugDrawer.get())
{
mDebugDrawer.reset(new MWRender::DebugDrawer(mParentNode, mCollisionWorld));
mCollisionWorld->setDebugDrawer(mDebugDrawer.get());
mDebugDrawer->setDebugMode(mDebugDrawEnabled);
}
else if (mDebugDrawer.get())
mDebugDrawer->setDebugMode(mDebugDrawEnabled);
return mDebugDrawEnabled;
}
void PhysicsSystem::markAsNonSolid(const MWWorld::ConstPtr &ptr)
{
ObjectMap::iterator found = mObjects.find(ptr);
if (found == mObjects.end())
return;
found->second->setSolid(false);
}
bool PhysicsSystem::isOnSolidGround (const MWWorld::Ptr& actor) const
{
const Actor* physactor = getActor(actor);
if (!physactor || !physactor->getOnGround())
return false;
CollisionMap::const_iterator found = mStandingCollisions.find(actor);
if (found == mStandingCollisions.end())
return true; // assume standing on terrain (which is a non-object, so not collision tracked)
ObjectMap::const_iterator foundObj = mObjects.find(found->second);
if (foundObj == mObjects.end())
return false;
if (!foundObj->second->isSolid())
return false;
return true;
}
class DeepestNotMeContactTestResultCallback : public btCollisionWorld::ContactResultCallback
{
const btCollisionObject* mMe;
const std::vector<const btCollisionObject*> mTargets;
// Store the real origin, since the shape's origin is its center
btVector3 mOrigin;
public:
const btCollisionObject *mObject;
btVector3 mContactPoint;
btScalar mLeastDistSqr;
DeepestNotMeContactTestResultCallback(const btCollisionObject* me, const std::vector<const btCollisionObject*>& targets, const btVector3 &origin)
: mMe(me), mTargets(targets), mOrigin(origin), mObject(NULL), mContactPoint(0,0,0),
mLeastDistSqr(std::numeric_limits<float>::max())
{ }
virtual btScalar addSingleResult(btManifoldPoint& cp,
const btCollisionObjectWrapper* col0Wrap,int partId0,int index0,
const btCollisionObjectWrapper* col1Wrap,int partId1,int index1)
{
const btCollisionObject* collisionObject = col1Wrap->m_collisionObject;
if (collisionObject != mMe)
{
if (!mTargets.empty())
{
if ((std::find(mTargets.begin(), mTargets.end(), collisionObject) == mTargets.end()))
{
PtrHolder* holder = static_cast<PtrHolder*>(collisionObject->getUserPointer());
if (holder && !holder->getPtr().isEmpty() && holder->getPtr().getClass().isActor())
return 0.f;
}
}
btScalar distsqr = mOrigin.distance2(cp.getPositionWorldOnA());
if(!mObject || distsqr < mLeastDistSqr)
{
mObject = collisionObject;
mLeastDistSqr = distsqr;
mContactPoint = cp.getPositionWorldOnA();
}
}
return 0.f;
}
};
std::pair<MWWorld::Ptr, osg::Vec3f> PhysicsSystem::getHitContact(const MWWorld::ConstPtr& actor,
const osg::Vec3f &origin,
const osg::Quat &orient,
float queryDistance, std::vector<MWWorld::Ptr> targets)
{
// First of all, try to hit where you aim to
int hitmask = CollisionType_World | CollisionType_Door | CollisionType_HeightMap | CollisionType_Actor;
RayResult result = castRay(origin, origin + (orient * osg::Vec3f(0.0f, queryDistance, 0.0f)), actor, targets, 0xff, hitmask);
if (result.mHit)
{
return std::make_pair(result.mHitObject, result.mHitPos);
}
// Use cone shape as fallback
const MWWorld::Store<ESM::GameSetting> &store = MWBase::Environment::get().getWorld()->getStore().get<ESM::GameSetting>();
btConeShape shape (osg::DegreesToRadians(store.find("fCombatAngleXY")->getFloat()/2.0f), queryDistance);
shape.setLocalScaling(btVector3(1, 1, osg::DegreesToRadians(store.find("fCombatAngleZ")->getFloat()/2.0f) /
shape.getRadius()));
// The shape origin is its center, so we have to move it forward by half the length. The
// real origin will be provided to getFilteredContact to find the closest.
osg::Vec3f center = origin + (orient * osg::Vec3f(0.0f, queryDistance*0.5f, 0.0f));
btCollisionObject object;
object.setCollisionShape(&shape);
object.setWorldTransform(btTransform(toBullet(orient), toBullet(center)));
const btCollisionObject* me = NULL;
std::vector<const btCollisionObject*> targetCollisionObjects;
const Actor* physactor = getActor(actor);
if (physactor)
me = physactor->getCollisionObject();
if (!targets.empty())
{
for (std::vector<MWWorld::Ptr>::const_iterator it = targets.begin(); it != targets.end(); ++it)
{
const Actor* physactor2 = getActor(*it);
if (physactor2)
targetCollisionObjects.push_back(physactor2->getCollisionObject());
}
}
DeepestNotMeContactTestResultCallback resultCallback(me, targetCollisionObjects, toBullet(origin));
resultCallback.m_collisionFilterGroup = CollisionType_Actor;
resultCallback.m_collisionFilterMask = CollisionType_World | CollisionType_Door | CollisionType_HeightMap | CollisionType_Actor;
mCollisionWorld->contactTest(&object, resultCallback);
if (resultCallback.mObject)
{
PtrHolder* holder = static_cast<PtrHolder*>(resultCallback.mObject->getUserPointer());
if (holder)
return std::make_pair(holder->getPtr(), toOsg(resultCallback.mContactPoint));
}
return std::make_pair(MWWorld::Ptr(), osg::Vec3f());
}
float PhysicsSystem::getHitDistance(const osg::Vec3f &point, const MWWorld::ConstPtr &target) const
{
btCollisionObject* targetCollisionObj = NULL;
const Actor* actor = getActor(target);
if (actor)
targetCollisionObj = actor->getCollisionObject();
if (!targetCollisionObj)
return 0.f;
btTransform rayFrom;
rayFrom.setIdentity();
rayFrom.setOrigin(toBullet(point));
// target the collision object's world origin, this should be the center of the collision object
btTransform rayTo;
rayTo.setIdentity();
rayTo.setOrigin(targetCollisionObj->getWorldTransform().getOrigin());
btCollisionWorld::ClosestRayResultCallback cb(rayFrom.getOrigin(), rayTo.getOrigin());
btCollisionWorld::rayTestSingle(rayFrom, rayTo, targetCollisionObj, targetCollisionObj->getCollisionShape(), targetCollisionObj->getWorldTransform(), cb);
if (!cb.hasHit())
{
// didn't hit the target. this could happen if point is already inside the collision box
return 0.f;
}
else
return (point - toOsg(cb.m_hitPointWorld)).length();
}
class ClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback
{
public:
ClosestNotMeRayResultCallback(const btCollisionObject* me, const std::vector<const btCollisionObject*>& targets, const btVector3& from, const btVector3& to)
: btCollisionWorld::ClosestRayResultCallback(from, to)
, mMe(me), mTargets(targets)
{
}
virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, bool normalInWorldSpace)
{
if (rayResult.m_collisionObject == mMe)
return 1.f;
if (!mTargets.empty())
{
if ((std::find(mTargets.begin(), mTargets.end(), rayResult.m_collisionObject) == mTargets.end()))
{
PtrHolder* holder = static_cast<PtrHolder*>(rayResult.m_collisionObject->getUserPointer());
if (holder && !holder->getPtr().isEmpty() && holder->getPtr().getClass().isActor())
return 1.f;
}
}
return btCollisionWorld::ClosestRayResultCallback::addSingleResult(rayResult, normalInWorldSpace);
}
private:
const btCollisionObject* mMe;
const std::vector<const btCollisionObject*> mTargets;
};
PhysicsSystem::RayResult PhysicsSystem::castRay(const osg::Vec3f &from, const osg::Vec3f &to, const MWWorld::ConstPtr& ignore, std::vector<MWWorld::Ptr> targets, int mask, int group) const
{
btVector3 btFrom = toBullet(from);
btVector3 btTo = toBullet(to);
const btCollisionObject* me = NULL;
std::vector<const btCollisionObject*> targetCollisionObjects;
if (!ignore.isEmpty())
{
const Actor* actor = getActor(ignore);
if (actor)
me = actor->getCollisionObject();
else
{
const Object* object = getObject(ignore);
if (object)
me = object->getCollisionObject();
}
}
if (!targets.empty())
{
for (std::vector<MWWorld::Ptr>::const_iterator it = targets.begin(); it != targets.end(); ++it)
{
const Actor* actor = getActor(*it);
if (actor)
targetCollisionObjects.push_back(actor->getCollisionObject());
}
}
ClosestNotMeRayResultCallback resultCallback(me, targetCollisionObjects, btFrom, btTo);
resultCallback.m_collisionFilterGroup = group;
resultCallback.m_collisionFilterMask = mask;
mCollisionWorld->rayTest(btFrom, btTo, resultCallback);
RayResult result;
result.mHit = resultCallback.hasHit();
if (resultCallback.hasHit())
{
result.mHitPos = toOsg(resultCallback.m_hitPointWorld);
result.mHitNormal = toOsg(resultCallback.m_hitNormalWorld);
if (PtrHolder* ptrHolder = static_cast<PtrHolder*>(resultCallback.m_collisionObject->getUserPointer()))
result.mHitObject = ptrHolder->getPtr();
}
return result;
}
PhysicsSystem::RayResult PhysicsSystem::castSphere(const osg::Vec3f &from, const osg::Vec3f &to, float radius)
{
btCollisionWorld::ClosestConvexResultCallback callback(toBullet(from), toBullet(to));
callback.m_collisionFilterGroup = 0xff;
callback.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap|CollisionType_Door;
btSphereShape shape(radius);
const btQuaternion btrot = btQuaternion::getIdentity();
btTransform from_ (btrot, toBullet(from));
btTransform to_ (btrot, toBullet(to));
mCollisionWorld->convexSweepTest(&shape, from_, to_, callback);
RayResult result;
result.mHit = callback.hasHit();
if (result.mHit)
{
result.mHitPos = toOsg(callback.m_hitPointWorld);
result.mHitNormal = toOsg(callback.m_hitNormalWorld);
}
return result;
}
bool PhysicsSystem::getLineOfSight(const MWWorld::ConstPtr &actor1, const MWWorld::ConstPtr &actor2) const
{
const Actor* physactor1 = getActor(actor1);
const Actor* physactor2 = getActor(actor2);
if (!physactor1 || !physactor2)
return false;
osg::Vec3f pos1 (physactor1->getCollisionObjectPosition() + osg::Vec3f(0,0,physactor1->getHalfExtents().z() * 0.9)); // eye level
osg::Vec3f pos2 (physactor2->getCollisionObjectPosition() + osg::Vec3f(0,0,physactor2->getHalfExtents().z() * 0.9));
RayResult result = castRay(pos1, pos2, MWWorld::ConstPtr(), std::vector<MWWorld::Ptr>(), CollisionType_World|CollisionType_HeightMap|CollisionType_Door);
return !result.mHit;
}
bool PhysicsSystem::isOnGround(const MWWorld::Ptr &actor)
{
Actor* physactor = getActor(actor);
return physactor && physactor->getOnGround();
}
bool PhysicsSystem::canMoveToWaterSurface(const MWWorld::ConstPtr &actor, const float waterlevel)
{
const Actor* physicActor = getActor(actor);
if (!physicActor)
return false;
const float halfZ = physicActor->getHalfExtents().z();
const osg::Vec3f actorPosition = physicActor->getPosition();
const osg::Vec3f startingPosition(actorPosition.x(), actorPosition.y(), actorPosition.z() + halfZ);
const osg::Vec3f destinationPosition(actorPosition.x(), actorPosition.y(), waterlevel + halfZ);
ActorTracer tracer;
tracer.doTrace(physicActor->getCollisionObject(), startingPosition, destinationPosition, mCollisionWorld);
return (tracer.mFraction >= 1.0f);
}
osg::Vec3f PhysicsSystem::getHalfExtents(const MWWorld::ConstPtr &actor) const
{
const Actor* physactor = getActor(actor);
if (physactor)
return physactor->getHalfExtents();
else
return osg::Vec3f();
}
osg::Vec3f PhysicsSystem::getRenderingHalfExtents(const MWWorld::ConstPtr &actor) const
{
const Actor* physactor = getActor(actor);
if (physactor)
return physactor->getRenderingHalfExtents();
else
return osg::Vec3f();
}
osg::Vec3f PhysicsSystem::getCollisionObjectPosition(const MWWorld::ConstPtr &actor) const
{
const Actor* physactor = getActor(actor);
if (physactor)
return physactor->getCollisionObjectPosition();
else
return osg::Vec3f();
}
class ContactTestResultCallback : public btCollisionWorld::ContactResultCallback
{
public:
ContactTestResultCallback(const btCollisionObject* testedAgainst)
: mTestedAgainst(testedAgainst)
{
}
const btCollisionObject* mTestedAgainst;
std::vector<MWWorld::Ptr> mResult;
virtual btScalar addSingleResult(btManifoldPoint& cp,
const btCollisionObjectWrapper* col0Wrap,int partId0,int index0,
const btCollisionObjectWrapper* col1Wrap,int partId1,int index1)
{
const btCollisionObject* collisionObject = col0Wrap->m_collisionObject;
if (collisionObject == mTestedAgainst)
collisionObject = col1Wrap->m_collisionObject;
PtrHolder* holder = static_cast<PtrHolder*>(collisionObject->getUserPointer());
if (holder)
mResult.push_back(holder->getPtr());
return 0.f;
}
};
std::vector<MWWorld::Ptr> PhysicsSystem::getCollisions(const MWWorld::ConstPtr &ptr, int collisionGroup, int collisionMask) const
{
btCollisionObject* me = NULL;
ObjectMap::const_iterator found = mObjects.find(ptr);
if (found != mObjects.end())
me = found->second->getCollisionObject();
else
return std::vector<MWWorld::Ptr>();
ContactTestResultCallback resultCallback (me);
resultCallback.m_collisionFilterGroup = collisionGroup;
resultCallback.m_collisionFilterMask = collisionMask;
mCollisionWorld->contactTest(me, resultCallback);
return resultCallback.mResult;
}
osg::Vec3f PhysicsSystem::traceDown(const MWWorld::Ptr &ptr, const osg::Vec3f& position, float maxHeight)
{
ActorMap::iterator found = mActors.find(ptr);
if (found == mActors.end())
return ptr.getRefData().getPosition().asVec3();
else
return MovementSolver::traceDown(ptr, position, found->second, mCollisionWorld, maxHeight);
}
void PhysicsSystem::addHeightField (const float* heights, int x, int y, float triSize, float sqrtVerts, float minH, float maxH, const osg::Object* holdObject)
{
HeightField *heightfield = new HeightField(heights, x, y, triSize, sqrtVerts, minH, maxH, holdObject);
mHeightFields[std::make_pair(x,y)] = heightfield;
mCollisionWorld->addCollisionObject(heightfield->getCollisionObject(), CollisionType_HeightMap,
CollisionType_Actor|CollisionType_Projectile);
}
void PhysicsSystem::removeHeightField (int x, int y)
{
HeightFieldMap::iterator heightfield = mHeightFields.find(std::make_pair(x,y));
if(heightfield != mHeightFields.end())
{
mCollisionWorld->removeCollisionObject(heightfield->second->getCollisionObject());
delete heightfield->second;
mHeightFields.erase(heightfield);
}
}
void PhysicsSystem::addObject (const MWWorld::Ptr& ptr, const std::string& mesh, int collisionType)
{
osg::ref_ptr<Resource::BulletShapeInstance> shapeInstance = mShapeManager->getInstance(mesh);
if (!shapeInstance || !shapeInstance->getCollisionShape())
return;
Object *obj = new Object(ptr, shapeInstance);
mObjects.insert(std::make_pair(ptr, obj));
if (obj->isAnimated())
mAnimatedObjects.insert(obj);
mCollisionWorld->addCollisionObject(obj->getCollisionObject(), collisionType,
CollisionType_Actor|CollisionType_HeightMap|CollisionType_Projectile);
}
void PhysicsSystem::remove(const MWWorld::Ptr &ptr)
{
ObjectMap::iterator found = mObjects.find(ptr);
if (found != mObjects.end())
{
mCollisionWorld->removeCollisionObject(found->second->getCollisionObject());
if (mUnrefQueue.get())
mUnrefQueue->push(found->second->getShapeInstance());
mAnimatedObjects.erase(found->second);
delete found->second;
mObjects.erase(found);
}
ActorMap::iterator foundActor = mActors.find(ptr);
if (foundActor != mActors.end())
{
delete foundActor->second;
mActors.erase(foundActor);
}
}
void PhysicsSystem::updateCollisionMapPtr(CollisionMap& map, const MWWorld::Ptr &old, const MWWorld::Ptr &updated)
{
CollisionMap::iterator found = map.find(old);
if (found != map.end())
{
map[updated] = found->second;
map.erase(found);
}
for (CollisionMap::iterator it = map.begin(); it != map.end(); ++it)
{
if (it->second == old)
it->second = updated;
}
}
void PhysicsSystem::updatePtr(const MWWorld::Ptr &old, const MWWorld::Ptr &updated)
{
ObjectMap::iterator found = mObjects.find(old);
if (found != mObjects.end())
{
Object* obj = found->second;
obj->updatePtr(updated);
mObjects.erase(found);
mObjects.insert(std::make_pair(updated, obj));
}
ActorMap::iterator foundActor = mActors.find(old);
if (foundActor != mActors.end())
{
Actor* actor = foundActor->second;
actor->updatePtr(updated);
mActors.erase(foundActor);
mActors.insert(std::make_pair(updated, actor));
}
updateCollisionMapPtr(mStandingCollisions, old, updated);
}
Actor *PhysicsSystem::getActor(const MWWorld::Ptr &ptr)
{
ActorMap::iterator found = mActors.find(ptr);
if (found != mActors.end())
return found->second;
return NULL;
}
const Actor *PhysicsSystem::getActor(const MWWorld::ConstPtr &ptr) const
{
ActorMap::const_iterator found = mActors.find(ptr);
if (found != mActors.end())
return found->second;
return NULL;
}
const Object* PhysicsSystem::getObject(const MWWorld::ConstPtr &ptr) const
{
ObjectMap::const_iterator found = mObjects.find(ptr);
if (found != mObjects.end())
return found->second;
return NULL;
}
void PhysicsSystem::updateScale(const MWWorld::Ptr &ptr)
{
ObjectMap::iterator found = mObjects.find(ptr);
if (found != mObjects.end())
{
float scale = ptr.getCellRef().getScale();
found->second->setScale(scale);
mCollisionWorld->updateSingleAabb(found->second->getCollisionObject());
return;
}
ActorMap::iterator foundActor = mActors.find(ptr);
if (foundActor != mActors.end())
{
foundActor->second->updateScale();
mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject());
return;
}
}
void PhysicsSystem::updateRotation(const MWWorld::Ptr &ptr)
{
ObjectMap::iterator found = mObjects.find(ptr);
if (found != mObjects.end())
{
found->second->setRotation(toBullet(ptr.getRefData().getBaseNode()->getAttitude()));
mCollisionWorld->updateSingleAabb(found->second->getCollisionObject());
return;
}
ActorMap::iterator foundActor = mActors.find(ptr);
if (foundActor != mActors.end())
{
if (!foundActor->second->isRotationallyInvariant())
{
foundActor->second->updateRotation();
mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject());
}
return;
}
}
void PhysicsSystem::updatePosition(const MWWorld::Ptr &ptr)
{
ObjectMap::iterator found = mObjects.find(ptr);
if (found != mObjects.end())
{
found->second->setOrigin(toBullet(ptr.getRefData().getPosition().asVec3()));
mCollisionWorld->updateSingleAabb(found->second->getCollisionObject());
return;
}
ActorMap::iterator foundActor = mActors.find(ptr);
if (foundActor != mActors.end())
{
foundActor->second->updatePosition();
mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject());
return;
}
}
void PhysicsSystem::addActor (const MWWorld::Ptr& ptr, const std::string& mesh) {
osg::ref_ptr<const Resource::BulletShape> shape = mShapeManager->getShape(mesh);
if (!shape)
return;
Actor* actor = new Actor(ptr, shape, mCollisionWorld);
mActors.insert(std::make_pair(ptr, actor));
}
bool PhysicsSystem::toggleCollisionMode()
{
ActorMap::iterator found = mActors.find(MWMechanics::getPlayer());
if (found != mActors.end())
{
bool cmode = found->second->getCollisionMode();
cmode = !cmode;
found->second->enableCollisionMode(cmode);
found->second->enableCollisionBody(cmode);
return cmode;
}
return false;
}
void PhysicsSystem::queueObjectMovement(const MWWorld::Ptr &ptr, const osg::Vec3f &movement)
{
PtrVelocityList::iterator iter = mMovementQueue.begin();
for(;iter != mMovementQueue.end();++iter)
{
if(iter->first == ptr)
{
iter->second = movement;
return;
}
}
mMovementQueue.push_back(std::make_pair(ptr, movement));
}
void PhysicsSystem::clearQueuedMovement()
{
mMovementQueue.clear();
mStandingCollisions.clear();
}
const PtrVelocityList& PhysicsSystem::applyQueuedMovement(float dt)
{
mMovementResults.clear();
mTimeAccum += dt;
const int maxAllowedSteps = 20;
int numSteps = mTimeAccum / (mPhysicsDt);
numSteps = std::min(numSteps, maxAllowedSteps);
mTimeAccum -= numSteps * mPhysicsDt;
if (numSteps)
{
// Collision events should be available on every frame
mStandingCollisions.clear();
}
const MWBase::World *world = MWBase::Environment::get().getWorld();
PtrVelocityList::iterator iter = mMovementQueue.begin();
for(;iter != mMovementQueue.end();++iter)
{
ActorMap::iterator foundActor = mActors.find(iter->first);
if (foundActor == mActors.end()) // actor was already removed from the scene
continue;
Actor* physicActor = foundActor->second;
float waterlevel = -std::numeric_limits<float>::max();
const MWWorld::CellStore *cell = iter->first.getCell();
if(cell->getCell()->hasWater())
waterlevel = cell->getWaterLevel();
const MWMechanics::MagicEffects& effects = iter->first.getClass().getCreatureStats(iter->first).getMagicEffects();
bool waterCollision = false;
if (cell->getCell()->hasWater() && effects.get(ESM::MagicEffect::WaterWalking).getMagnitude())
{
if (!world->isUnderwater(iter->first.getCell(), osg::Vec3f(iter->first.getRefData().getPosition().asVec3())))
waterCollision = true;
else if (physicActor->getCollisionMode() && canMoveToWaterSurface(iter->first, waterlevel))
{
const osg::Vec3f actorPosition = physicActor->getPosition();
physicActor->setPosition(osg::Vec3f(actorPosition.x(), actorPosition.y(), waterlevel));
waterCollision = true;
}
}
physicActor->setCanWaterWalk(waterCollision);
// Slow fall reduces fall speed by a factor of (effect magnitude / 200)
float slowFall = 1.f - std::max(0.f, std::min(1.f, effects.get(ESM::MagicEffect::SlowFall).getMagnitude() * 0.005f));
bool flying = world->isFlying(iter->first);
bool wasOnGround = physicActor->getOnGround();
osg::Vec3f position = physicActor->getPosition();
float oldHeight = position.z();
bool positionChanged = false;
for (int i=0; i<numSteps; ++i)
{
position = MovementSolver::move(position, physicActor->getPtr(), physicActor, iter->second, mPhysicsDt,
flying, waterlevel, slowFall, mCollisionWorld, mStandingCollisions);
if (position != physicActor->getPosition())
positionChanged = true;
physicActor->setPosition(position); // always set even if unchanged to make sure interpolation is correct
}
if (positionChanged)
mCollisionWorld->updateSingleAabb(physicActor->getCollisionObject());
float interpolationFactor = mTimeAccum / mPhysicsDt;
osg::Vec3f interpolated = position * interpolationFactor + physicActor->getPreviousPosition() * (1.f - interpolationFactor);
float heightDiff = position.z() - oldHeight;
MWMechanics::CreatureStats& stats = iter->first.getClass().getCreatureStats(iter->first);
if ((wasOnGround && physicActor->getOnGround()) || flying || world->isSwimming(iter->first) || slowFall < 1)
stats.land();
else if (heightDiff < 0)
stats.addToFallHeight(-heightDiff);
mMovementResults.push_back(std::make_pair(iter->first, interpolated));
}
mMovementQueue.clear();
return mMovementResults;
}
void PhysicsSystem::stepSimulation(float dt)
{
for (std::set<Object*>::iterator it = mAnimatedObjects.begin(); it != mAnimatedObjects.end(); ++it)
(*it)->animateCollisionShapes(mCollisionWorld);
#ifndef BT_NO_PROFILE
CProfileManager::Reset();
CProfileManager::Increment_Frame_Counter();
#endif
}
void PhysicsSystem::debugDraw()
{
if (mDebugDrawer.get())
mDebugDrawer->step();
}
bool PhysicsSystem::isActorStandingOn(const MWWorld::Ptr &actor, const MWWorld::ConstPtr &object) const
{
for (CollisionMap::const_iterator it = mStandingCollisions.begin(); it != mStandingCollisions.end(); ++it)
{
if (it->first == actor && it->second == object)
return true;
}
return false;
}
void PhysicsSystem::getActorsStandingOn(const MWWorld::ConstPtr &object, std::vector<MWWorld::Ptr> &out) const
{
for (CollisionMap::const_iterator it = mStandingCollisions.begin(); it != mStandingCollisions.end(); ++it)
{
if (it->second == object)
out.push_back(it->first);
}
}
bool PhysicsSystem::isActorCollidingWith(const MWWorld::Ptr &actor, const MWWorld::ConstPtr &object) const
{
std::vector<MWWorld::Ptr> collisions = getCollisions(object, CollisionType_World, CollisionType_Actor);
return (std::find(collisions.begin(), collisions.end(), actor) != collisions.end());
}
void PhysicsSystem::getActorsCollidingWith(const MWWorld::ConstPtr &object, std::vector<MWWorld::Ptr> &out) const
{
std::vector<MWWorld::Ptr> collisions = getCollisions(object, CollisionType_World, CollisionType_Actor);
out.insert(out.end(), collisions.begin(), collisions.end());
}
void PhysicsSystem::disableWater()
{
if (mWaterEnabled)
{
mWaterEnabled = false;
updateWater();
}
}
void PhysicsSystem::enableWater(float height)
{
if (!mWaterEnabled || mWaterHeight != height)
{
mWaterEnabled = true;
mWaterHeight = height;
updateWater();
}
}
void PhysicsSystem::setWaterHeight(float height)
{
if (mWaterHeight != height)
{
mWaterHeight = height;
updateWater();
}
}
void PhysicsSystem::updateWater()
{
if (mWaterCollisionObject.get())
{
mCollisionWorld->removeCollisionObject(mWaterCollisionObject.get());
}
if (!mWaterEnabled)
{
mWaterCollisionObject.reset();
return;
}
mWaterCollisionObject.reset(new btCollisionObject());
mWaterCollisionShape.reset(new btStaticPlaneShape(btVector3(0,0,1), mWaterHeight));
mWaterCollisionObject->setCollisionShape(mWaterCollisionShape.get());
mCollisionWorld->addCollisionObject(mWaterCollisionObject.get(), CollisionType_Water,
CollisionType_Actor);
}
}