mirror of
https://gitlab.com/OpenMW/openmw.git
synced 2025-01-26 09:35:28 +00:00
07fd801d94
There is still an unresolved issue where mGraph and mSCComp are being rebuilt unnecessarily. The check mCell != cell in buildPath() is being triggered frequently. Not sure why.
650 lines
23 KiB
C++
650 lines
23 KiB
C++
#include "pathfinding.hpp"
|
|
|
|
#include <map>
|
|
|
|
#include "OgreMath.h"
|
|
#include "OgreVector3.h"
|
|
|
|
#include "../mwbase/world.hpp"
|
|
#include "../mwbase/environment.hpp"
|
|
|
|
#include "../mwworld/esmstore.hpp"
|
|
#include "../mwworld/cellstore.hpp"
|
|
|
|
namespace
|
|
{
|
|
float distanceZCorrected(ESM::Pathgrid::Point point, float x, float y, float z)
|
|
{
|
|
x -= point.mX;
|
|
y -= point.mY;
|
|
z -= point.mZ;
|
|
return sqrt(x * x + y * y + 0.1 * z * z);
|
|
}
|
|
|
|
float distance(ESM::Pathgrid::Point point, float x, float y, float z)
|
|
{
|
|
x -= point.mX;
|
|
y -= point.mY;
|
|
z -= point.mZ;
|
|
return sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
float distance(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
|
|
{
|
|
float x = a.mX - b.mX;
|
|
float y = a.mY - b.mY;
|
|
float z = a.mZ - b.mZ;
|
|
return sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
|
|
//
|
|
// One of the smallest cost in Seyda Neen is between points 77 & 78:
|
|
// pt x y
|
|
// 77 = 8026, 4480
|
|
// 78 = 7986, 4218
|
|
//
|
|
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
|
|
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
|
|
// starting point for experiments. If in doubt, just use value 1.
|
|
//
|
|
// The distance between 3 & 4 are pretty small, too.
|
|
// 3 = 5435, 223
|
|
// 4 = 5948, 193
|
|
//
|
|
// Approx. 514 Euclidean distance and 533 Manhattan distance.
|
|
//
|
|
float manhattan(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
|
|
{
|
|
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
|
|
}
|
|
|
|
// Choose a heuristics - these may not be the best for directed graphs with
|
|
// non uniform edge costs.
|
|
//
|
|
// distance:
|
|
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
|
|
// - slower but more accurate
|
|
//
|
|
// Manhattan:
|
|
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
|
|
// - faster but not the shortest path
|
|
float costAStar(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
|
|
{
|
|
//return distance(a, b);
|
|
return manhattan(a, b);
|
|
}
|
|
|
|
// Slightly cheaper version for comparisons.
|
|
// Caller needs to be careful for very short distances (i.e. less than 1)
|
|
// or when accumuating the results i.e. (a + b)^2 != a^2 + b^2
|
|
//
|
|
float distanceSquared(ESM::Pathgrid::Point point, Ogre::Vector3 pos)
|
|
{
|
|
return Ogre::Vector3(point.mX, point.mY, point.mZ).squaredDistance(pos);
|
|
}
|
|
|
|
// Return the closest pathgrid point index from the specified position co
|
|
// -ordinates. NOTE: Does not check if there is a sensible way to get there
|
|
// (e.g. a cliff in front).
|
|
//
|
|
// NOTE: pos is expected to be in local co-ordinates, as is grid->mPoints
|
|
//
|
|
int getClosestPoint(const ESM::Pathgrid* grid, Ogre::Vector3 pos)
|
|
{
|
|
if(!grid || grid->mPoints.empty())
|
|
return -1;
|
|
|
|
float distanceBetween = distanceSquared(grid->mPoints[0], pos);
|
|
int closestIndex = 0;
|
|
|
|
// TODO: if this full scan causes performance problems mapping pathgrid
|
|
// points to a quadtree may help
|
|
for(unsigned int counter = 1; counter < grid->mPoints.size(); counter++)
|
|
{
|
|
float potentialDistBetween = distanceSquared(grid->mPoints[counter], pos);
|
|
if(potentialDistBetween < distanceBetween)
|
|
{
|
|
distanceBetween = potentialDistBetween;
|
|
closestIndex = counter;
|
|
}
|
|
}
|
|
|
|
return closestIndex;
|
|
}
|
|
|
|
// Uses mSCComp to choose a reachable end pathgrid point. start is assumed reachable.
|
|
std::pair<int, bool> getClosestReachablePoint(const ESM::Pathgrid* grid,
|
|
Ogre::Vector3 pos, int start, std::vector<int> &sCComp)
|
|
{
|
|
// assume grid is fine
|
|
int startGroup = sCComp[start];
|
|
|
|
float distanceBetween = distanceSquared(grid->mPoints[0], pos);
|
|
int closestIndex = 0;
|
|
int closestReachableIndex = 0;
|
|
// TODO: if this full scan causes performance problems mapping pathgrid
|
|
// points to a quadtree may help
|
|
for(unsigned int counter = 1; counter < grid->mPoints.size(); counter++)
|
|
{
|
|
float potentialDistBetween = distanceSquared(grid->mPoints[counter], pos);
|
|
if(potentialDistBetween < distanceBetween)
|
|
{
|
|
// found a closer one
|
|
distanceBetween = potentialDistBetween;
|
|
closestIndex = counter;
|
|
if (sCComp[counter] == startGroup)
|
|
{
|
|
closestReachableIndex = counter;
|
|
}
|
|
}
|
|
}
|
|
if(start == closestReachableIndex)
|
|
closestReachableIndex = -1; // couldn't find anyting other than start
|
|
|
|
return std::pair<int, bool>
|
|
(closestReachableIndex, closestReachableIndex == closestIndex);
|
|
}
|
|
|
|
}
|
|
|
|
namespace MWMechanics
|
|
{
|
|
PathFinder::PathFinder()
|
|
: mIsPathConstructed(false),
|
|
mIsGraphConstructed(false),
|
|
mCell(NULL)
|
|
{
|
|
}
|
|
|
|
void PathFinder::clearPath()
|
|
{
|
|
if(!mPath.empty())
|
|
mPath.clear();
|
|
mIsPathConstructed = false;
|
|
}
|
|
|
|
/*
|
|
* NOTE: Based on buildPath2(), please check git history if interested
|
|
*
|
|
* Populate mGraph with the cost of each allowed edge.
|
|
*
|
|
* Any existing data in mGraph is wiped clean first. The node's parent
|
|
* is set with initial value of -1. The parent values are populated by
|
|
* aStarSearch() in order to reconstruct a path.
|
|
*
|
|
* mGraph[f].edges[n].destination = t
|
|
*
|
|
* f = point index of location "from"
|
|
* t = point index of location "to"
|
|
* n = index of edges from point f
|
|
*
|
|
*
|
|
* Example: (note from p(0) to p(2) not allowed in this example)
|
|
*
|
|
* mGraph[0].edges[0].destination = 1
|
|
* .edges[1].destination = 3
|
|
*
|
|
* mGraph[1].edges[0].destination = 0
|
|
* .edges[1].destination = 2
|
|
* .edges[2].destination = 3
|
|
*
|
|
* mGraph[2].edges[0].destination = 1
|
|
*
|
|
* (etc, etc)
|
|
*
|
|
*
|
|
* low
|
|
* cost
|
|
* p(0) <---> p(1) <------------> p(2)
|
|
* ^ ^
|
|
* | |
|
|
* | +-----> p(3)
|
|
* +---------------->
|
|
* high cost
|
|
*/
|
|
void PathFinder::buildPathgridGraph(const ESM::Pathgrid* pathGrid)
|
|
{
|
|
mGraph.clear();
|
|
// resize lists
|
|
mGScore.resize(pathGrid->mPoints.size(), -1);
|
|
mFScore.resize(pathGrid->mPoints.size(), -1);
|
|
Node defaultNode;
|
|
defaultNode.label = -1;
|
|
defaultNode.parent = -1;
|
|
mGraph.resize(pathGrid->mPoints.size(),defaultNode);
|
|
// initialise mGraph
|
|
for(unsigned int i = 0; i < pathGrid->mPoints.size(); i++)
|
|
{
|
|
Node node;
|
|
node.label = i;
|
|
node.parent = -1;
|
|
mGraph[i] = node;
|
|
}
|
|
// store the costs of each edge
|
|
for(unsigned int i = 0; i < pathGrid->mEdges.size(); i++)
|
|
{
|
|
Edge edge;
|
|
edge.cost = costAStar(pathGrid->mPoints[pathGrid->mEdges[i].mV0],
|
|
pathGrid->mPoints[pathGrid->mEdges[i].mV1]);
|
|
// forward path of the edge
|
|
edge.destination = pathGrid->mEdges[i].mV1;
|
|
mGraph[pathGrid->mEdges[i].mV0].edges.push_back(edge);
|
|
// reverse path of the edge
|
|
// NOTE: These are redundant, the ESM already contains the reverse paths.
|
|
//edge.destination = pathGrid->mEdges[i].mV0;
|
|
//mGraph[pathGrid->mEdges[i].mV1].edges.push_back(edge);
|
|
}
|
|
mIsGraphConstructed = true;
|
|
}
|
|
|
|
// v is the pathgrid point index (some call them vertices)
|
|
void PathFinder::recursiveStrongConnect(int v)
|
|
{
|
|
mSCCPoint[v].first = mSCCIndex; // index
|
|
mSCCPoint[v].second = mSCCIndex; // lowlink
|
|
mSCCIndex++;
|
|
mSCCStack.push_back(v);
|
|
int w;
|
|
|
|
for(int i = 0; i < mGraph[v].edges.size(); i++)
|
|
{
|
|
w = mGraph[v].edges[i].destination;
|
|
if(mSCCPoint[w].first == -1) // not visited
|
|
{
|
|
recursiveStrongConnect(w); // recurse
|
|
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
|
|
mSCCPoint[w].second);
|
|
}
|
|
else
|
|
{
|
|
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
|
|
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
|
|
mSCCPoint[w].first);
|
|
}
|
|
}
|
|
|
|
if(mSCCPoint[v].second == mSCCPoint[v].first)
|
|
{
|
|
// new component
|
|
do
|
|
{
|
|
w = mSCCStack.back();
|
|
mSCCStack.pop_back();
|
|
mSCComp[w] = mSCCId;
|
|
}
|
|
while(w != v);
|
|
|
|
mSCCId++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* mSCComp contains the strongly connected component group id's.
|
|
*
|
|
* A cell can have disjointed pathgrid, e.g. Seyda Neen which has 3
|
|
*
|
|
* mSCComp for Seyda Neen will have 3 different values. When selecting a
|
|
* random pathgrid point for AiWander, mSCComp can be checked for quickly
|
|
* finding whether the destination is reachable.
|
|
*
|
|
* Otherwise, buildPath will automatically select a closest reachable end
|
|
* pathgrid point (reachable from the closest start point).
|
|
*
|
|
* Using Tarjan's algorithm
|
|
*
|
|
* mGraph | graph G |
|
|
* mSCCPoint | V | derived from pathGrid->mPoints
|
|
* mGraph[v].edges | E (for v) |
|
|
* mSCCIndex | index | keep track of smallest unused index
|
|
* mSCCStack | S |
|
|
* pathGrid
|
|
* ->mEdges[v].mV1 | w | = mGraph[v].edges[i].destination
|
|
*
|
|
* FIXME: Some of these can be cleaned up by including them to struct
|
|
* Node used by mGraph
|
|
*/
|
|
void PathFinder::buildConnectedPoints(const ESM::Pathgrid* pathGrid)
|
|
{
|
|
mSCComp.clear();
|
|
mSCComp.resize(pathGrid->mPoints.size(), 0);
|
|
mSCCId = 0;
|
|
|
|
mSCCIndex = 0;
|
|
mSCCStack.clear();
|
|
mSCCPoint.clear();
|
|
mSCCPoint.resize(pathGrid->mPoints.size(), std::pair<int, int> (-1, -1));
|
|
|
|
for(unsigned int v = 0; v < pathGrid->mPoints.size(); v++)
|
|
{
|
|
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
|
|
recursiveStrongConnect(v);
|
|
}
|
|
}
|
|
|
|
void PathFinder::cleanUpAStar()
|
|
{
|
|
for(int i = 0; i < static_cast<int> (mGraph.size()); i++)
|
|
{
|
|
mGraph[i].parent = -1;
|
|
mGScore[i] = -1;
|
|
mFScore[i] = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NOTE: Based on buildPath2(), please check git history if interested
|
|
* Should consider a using 3rd party library version (e.g. boost)
|
|
*
|
|
* Find the shortest path to the target goal using a well known algorithm.
|
|
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
|
|
* that mGraph is already constructed. The caller, i.e. buildPath(), needs
|
|
* to ensure this.
|
|
*
|
|
* Returns path (a list of pathgrid point indexes) which may be empty.
|
|
*
|
|
* Input params:
|
|
* start, goal - pathgrid point indexes (for this cell)
|
|
* xCell, yCell - values to add to convert path back to world scale
|
|
*
|
|
* Variables:
|
|
* openset - point indexes to be traversed, lowest cost at the front
|
|
* closedset - point indexes already traversed
|
|
*
|
|
* Class variables:
|
|
* mGScore - past accumulated costs vector indexed by point index
|
|
* mFScore - future estimated costs vector indexed by point index
|
|
* these are resized by buildPathgridGraph()
|
|
*/
|
|
std::list<ESM::Pathgrid::Point> PathFinder::aStarSearch(const ESM::Pathgrid* pathGrid,
|
|
int start, int goal,
|
|
float xCell, float yCell)
|
|
{
|
|
cleanUpAStar();
|
|
// mGScore & mFScore keep costs for each pathgrid point in pathGrid->mPoints
|
|
mGScore[start] = 0;
|
|
mFScore[start] = costAStar(pathGrid->mPoints[start], pathGrid->mPoints[goal]);
|
|
|
|
std::list<int> openset;
|
|
std::list<int> closedset;
|
|
openset.push_back(start);
|
|
|
|
int current = -1;
|
|
|
|
while(!openset.empty())
|
|
{
|
|
current = openset.front(); // front has the lowest cost
|
|
openset.pop_front();
|
|
|
|
if(current == goal)
|
|
break;
|
|
|
|
closedset.push_back(current); // remember we've been here
|
|
|
|
// check all edges for the current point index
|
|
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
|
|
{
|
|
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].destination) ==
|
|
closedset.end())
|
|
{
|
|
// not in closedset - i.e. have not traversed this edge destination
|
|
int dest = mGraph[current].edges[j].destination;
|
|
float tentative_g = mGScore[current] + mGraph[current].edges[j].cost;
|
|
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
|
|
if(!isInOpenSet
|
|
|| tentative_g < mGScore[dest])
|
|
{
|
|
mGraph[dest].parent = current;
|
|
mGScore[dest] = tentative_g;
|
|
mFScore[dest] = tentative_g +
|
|
costAStar(pathGrid->mPoints[dest], pathGrid->mPoints[goal]);
|
|
if(!isInOpenSet)
|
|
{
|
|
// add this edge to openset, lowest cost goes to the front
|
|
// TODO: if this causes performance problems a hash table may help
|
|
std::list<int>::iterator it = openset.begin();
|
|
for(it = openset.begin(); it!= openset.end(); it++)
|
|
{
|
|
if(mFScore[*it] > mFScore[dest])
|
|
break;
|
|
}
|
|
openset.insert(it, dest);
|
|
}
|
|
}
|
|
} // if in closedset, i.e. traversed this edge already, try the next edge
|
|
}
|
|
}
|
|
|
|
std::list<ESM::Pathgrid::Point> path;
|
|
if(current != goal)
|
|
return path; // for some reason couldn't build a path
|
|
// e.g. start was not reachable (we assume it is)
|
|
|
|
// reconstruct path to return, using world co-ordinates
|
|
while(mGraph[current].parent != -1)
|
|
{
|
|
ESM::Pathgrid::Point pt = pathGrid->mPoints[current];
|
|
pt.mX += xCell;
|
|
pt.mY += yCell;
|
|
path.push_front(pt);
|
|
current = mGraph[current].parent;
|
|
}
|
|
|
|
// TODO: Is this a bug? If path is empty the algorithm couldn't find a path.
|
|
// Simply using the destination as the path in this scenario seems strange.
|
|
// Commented out pending further testing.
|
|
#if 0
|
|
if(path.empty())
|
|
{
|
|
ESM::Pathgrid::Point pt = pathGrid->mPoints[goal];
|
|
pt.mX += xCell;
|
|
pt.mY += yCell;
|
|
path.push_front(pt);
|
|
}
|
|
#endif
|
|
return path;
|
|
}
|
|
|
|
/*
|
|
* NOTE: This method may fail to find a path. The caller must check the
|
|
* result before using it. If there is no path the AI routies need to
|
|
* implement some other heuristics to reach the target.
|
|
*
|
|
* NOTE: startPoint & endPoint are in world co-ordinates
|
|
*
|
|
* Updates mPath using aStarSearch() or ray test (if shortcut allowed).
|
|
* mPath consists of pathgrid points, except the last element which is
|
|
* endPoint. This may be useful where the endPoint is not on a pathgrid
|
|
* point (e.g. combat). However, if the caller has already chosen a
|
|
* pathgrid point (e.g. wander) then it may be worth while to call
|
|
* pop_back() to remove the redundant entry.
|
|
*
|
|
* mPathConstructed is set true if successful, false if not
|
|
*
|
|
* May update mGraph by calling buildPathgridGraph() if it isn't
|
|
* constructed yet. At the same time mConnectedPoints is also updated.
|
|
*
|
|
* NOTE: co-ordinates must be converted prior to calling getClosestPoint()
|
|
*
|
|
* |
|
|
* | cell
|
|
* | +-----------+
|
|
* | | |
|
|
* | | |
|
|
* | | @ |
|
|
* | i | j |
|
|
* |<--->|<---->| |
|
|
* | +-----------+
|
|
* | k
|
|
* |<---------->| world
|
|
* +-----------------------------
|
|
*
|
|
* i = x value of cell itself (multiply by ESM::Land::REAL_SIZE to convert)
|
|
* j = @.x in local co-ordinates (i.e. within the cell)
|
|
* k = @.x in world co-ordinates
|
|
*/
|
|
void PathFinder::buildPath(const ESM::Pathgrid::Point &startPoint,
|
|
const ESM::Pathgrid::Point &endPoint,
|
|
const MWWorld::CellStore* cell, bool allowShortcuts)
|
|
{
|
|
mPath.clear();
|
|
|
|
if(allowShortcuts)
|
|
{
|
|
// if there's a ray cast hit, can't take a direct path
|
|
if(!MWBase::Environment::get().getWorld()->castRay(startPoint.mX, startPoint.mY, startPoint.mZ,
|
|
endPoint.mX, endPoint.mY, endPoint.mZ))
|
|
{
|
|
mPath.push_back(endPoint);
|
|
mIsPathConstructed = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if(mCell != cell)
|
|
{
|
|
mIsGraphConstructed = false; // must be in a new cell, need a new mGraph and mSCComp
|
|
mCell = cell;
|
|
}
|
|
|
|
const ESM::Pathgrid *pathGrid =
|
|
MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*mCell->getCell());
|
|
float xCell = 0;
|
|
float yCell = 0;
|
|
|
|
if (mCell->isExterior())
|
|
{
|
|
xCell = mCell->getCell()->mData.mX * ESM::Land::REAL_SIZE;
|
|
yCell = mCell->getCell()->mData.mY * ESM::Land::REAL_SIZE;
|
|
}
|
|
|
|
// NOTE: It is possible that getClosestPoint returns a pathgrind point index
|
|
// that is unreachable in some situations. e.g. actor is standing
|
|
// outside an area enclosed by walls, but there is a pathgrid
|
|
// point right behind the wall that is closer than any pathgrid
|
|
// point outside the wall
|
|
//
|
|
// NOTE: getClosestPoint expects local co-ordinates
|
|
//
|
|
int startNode = getClosestPoint(pathGrid,
|
|
Ogre::Vector3(startPoint.mX - xCell, startPoint.mY - yCell, startPoint.mZ));
|
|
|
|
if(startNode != -1) // only check once, assume pathGrid won't change
|
|
{
|
|
if(!mIsGraphConstructed)
|
|
{
|
|
buildPathgridGraph(pathGrid); // pre-compute costs for use with aStarSearch
|
|
buildConnectedPoints(pathGrid); // must before calling getClosestReachablePoint
|
|
}
|
|
std::pair<int, bool> endNode = getClosestReachablePoint(pathGrid,
|
|
Ogre::Vector3(endPoint.mX - xCell, endPoint.mY - yCell, endPoint.mZ),
|
|
startNode, mSCComp);
|
|
|
|
if(endNode.first != -1)
|
|
{
|
|
mPath = aStarSearch(pathGrid, startNode, endNode.first, xCell, yCell);
|
|
|
|
if(!mPath.empty())
|
|
{
|
|
mIsPathConstructed = true;
|
|
// Add the destination (which may be different to the closest
|
|
// pathgrid point). However only add if endNode was the closest
|
|
// point to endPoint.
|
|
//
|
|
// This logic can fail in the opposite situate, e.g. endPoint may
|
|
// have been reachable but happened to be very close to an
|
|
// unreachable pathgrid point.
|
|
//
|
|
// The AI routines will have to deal with such situations.
|
|
if(endNode.second)
|
|
mPath.push_back(endPoint);
|
|
}
|
|
else
|
|
mIsPathConstructed = false;
|
|
}
|
|
else
|
|
mIsPathConstructed = false;
|
|
}
|
|
else
|
|
mIsPathConstructed = false; // this shouldn't really happen, but just in case
|
|
}
|
|
|
|
float PathFinder::getZAngleToNext(float x, float y) const
|
|
{
|
|
// This should never happen (programmers should have an if statement checking
|
|
// mIsPathConstructed that prevents this call if otherwise).
|
|
if(mPath.empty())
|
|
return 0.;
|
|
|
|
const ESM::Pathgrid::Point &nextPoint = *mPath.begin();
|
|
float directionX = nextPoint.mX - x;
|
|
float directionY = nextPoint.mY - y;
|
|
float directionResult = sqrt(directionX * directionX + directionY * directionY);
|
|
|
|
return Ogre::Radian(Ogre::Math::ACos(directionY / directionResult) * sgn(Ogre::Math::ASin(directionX / directionResult))).valueDegrees();
|
|
}
|
|
|
|
// Used by AiCombat, use Euclidean distance
|
|
float PathFinder::getDistToNext(float x, float y, float z)
|
|
{
|
|
ESM::Pathgrid::Point nextPoint = *mPath.begin();
|
|
return distance(nextPoint, x, y, z);
|
|
}
|
|
|
|
bool PathFinder::checkWaypoint(float x, float y, float z)
|
|
{
|
|
if(mPath.empty())
|
|
return true;
|
|
|
|
ESM::Pathgrid::Point nextPoint = *mPath.begin();
|
|
if(distanceZCorrected(nextPoint, x, y, z) < 64)
|
|
{
|
|
mPath.pop_front();
|
|
if(mPath.empty()) mIsPathConstructed = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PathFinder::checkPathCompleted(float x, float y, float z)
|
|
{
|
|
if(mPath.empty())
|
|
return true;
|
|
|
|
ESM::Pathgrid::Point nextPoint = *mPath.begin();
|
|
if(distanceZCorrected(nextPoint, x, y, z) < 64)
|
|
{
|
|
mPath.pop_front();
|
|
if(mPath.empty())
|
|
{
|
|
mIsPathConstructed = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// used by AiCombat, see header for the rationale
|
|
void PathFinder::syncStart(const std::list<ESM::Pathgrid::Point> &path)
|
|
{
|
|
if (mPath.size() < 2)
|
|
return; //nothing to pop
|
|
std::list<ESM::Pathgrid::Point>::const_iterator oldStart = path.begin();
|
|
std::list<ESM::Pathgrid::Point>::iterator iter = ++mPath.begin();
|
|
|
|
if( (*iter).mX == oldStart->mX
|
|
&& (*iter).mY == oldStart->mY
|
|
&& (*iter).mZ == oldStart->mZ
|
|
&& (*iter).mAutogenerated == oldStart->mAutogenerated
|
|
&& (*iter).mConnectionNum == oldStart->mConnectionNum )
|
|
{
|
|
mPath.pop_front();
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|