mirror of
https://gitlab.com/OpenMW/openmw.git
synced 2025-01-18 13:12:50 +00:00
157 lines
5.7 KiB
C++
157 lines
5.7 KiB
C++
#include "findsmoothpath.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
|
|
namespace DetourNavigator
|
|
{
|
|
std::vector<dtPolyRef> fixupCorridor(const std::vector<dtPolyRef>& path, const std::vector<dtPolyRef>& visited)
|
|
{
|
|
std::vector<dtPolyRef>::const_reverse_iterator furthestVisited;
|
|
|
|
// Find furthest common polygon.
|
|
const auto it = std::find_if(path.rbegin(), path.rend(), [&] (dtPolyRef pathValue)
|
|
{
|
|
const auto it = std::find(visited.rbegin(), visited.rend(), pathValue);
|
|
if (it == visited.rend())
|
|
return false;
|
|
furthestVisited = it;
|
|
return true;
|
|
});
|
|
|
|
// If no intersection found just return current path.
|
|
if (it == path.rend())
|
|
return path;
|
|
const auto furthestPath = it.base() - 1;
|
|
|
|
// Concatenate paths.
|
|
|
|
// visited: a_1 ... a_n x b_1 ... b_n
|
|
// furthestVisited ^
|
|
// path: C x D
|
|
// ^ furthestPath
|
|
// result: x b_n ... b_1 D
|
|
|
|
std::vector<dtPolyRef> result;
|
|
result.reserve(static_cast<std::size_t>(furthestVisited - visited.rbegin())
|
|
+ static_cast<std::size_t>(path.end() - furthestPath) - 1);
|
|
std::copy(visited.rbegin(), furthestVisited + 1, std::back_inserter(result));
|
|
std::copy(furthestPath + 1, path.end(), std::back_inserter(result));
|
|
|
|
return result;
|
|
}
|
|
|
|
// This function checks if the path has a small U-turn, that is,
|
|
// a polygon further in the path is adjacent to the first polygon
|
|
// in the path. If that happens, a shortcut is taken.
|
|
// This can happen if the target (T) location is at tile boundary,
|
|
// and we're (S) approaching it parallel to the tile edge.
|
|
// The choice at the vertex can be arbitrary,
|
|
// +---+---+
|
|
// |:::|:::|
|
|
// +-S-+-T-+
|
|
// |:::| | <-- the step can end up in here, resulting U-turn path.
|
|
// +---+---+
|
|
std::vector<dtPolyRef> fixupShortcuts(const std::vector<dtPolyRef>& path, const dtNavMeshQuery& navQuery)
|
|
{
|
|
if (path.size() < 3)
|
|
return path;
|
|
|
|
// Get connected polygons
|
|
const dtMeshTile* tile = nullptr;
|
|
const dtPoly* poly = nullptr;
|
|
if (dtStatusFailed(navQuery.getAttachedNavMesh()->getTileAndPolyByRef(path[0], &tile, &poly)))
|
|
return path;
|
|
|
|
const std::size_t maxNeis = 16;
|
|
std::array<dtPolyRef, maxNeis> neis;
|
|
std::size_t nneis = 0;
|
|
|
|
for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
|
|
{
|
|
const dtLink* link = &tile->links[k];
|
|
if (link->ref != 0)
|
|
{
|
|
if (nneis < maxNeis)
|
|
neis[nneis++] = link->ref;
|
|
}
|
|
}
|
|
|
|
// If any of the neighbour polygons is within the next few polygons
|
|
// in the path, short cut to that polygon directly.
|
|
const std::size_t maxLookAhead = 6;
|
|
std::size_t cut = 0;
|
|
for (std::size_t i = std::min(maxLookAhead, path.size()) - 1; i > 1 && cut == 0; i--)
|
|
{
|
|
for (std::size_t j = 0; j < nneis; j++)
|
|
{
|
|
if (path[i] == neis[j])
|
|
{
|
|
cut = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (cut <= 1)
|
|
return path;
|
|
|
|
std::vector<dtPolyRef> result;
|
|
const auto offset = cut - 1;
|
|
result.reserve(1 + path.size() - offset);
|
|
result.push_back(path.front());
|
|
std::copy(path.begin() + std::ptrdiff_t(offset), path.end(), std::back_inserter(result));
|
|
return result;
|
|
}
|
|
|
|
std::optional<SteerTarget> getSteerTarget(const dtNavMeshQuery& navQuery, const osg::Vec3f& startPos,
|
|
const osg::Vec3f& endPos, const float minTargetDist, const std::vector<dtPolyRef>& path)
|
|
{
|
|
// Find steer target.
|
|
SteerTarget result;
|
|
constexpr int maxSteerPoints = 3;
|
|
std::array<float, maxSteerPoints * 3> steerPath;
|
|
std::array<unsigned char, maxSteerPoints> steerPathFlags;
|
|
std::array<dtPolyRef, maxSteerPoints> steerPathPolys;
|
|
int nsteerPath = 0;
|
|
navQuery.findStraightPath(startPos.ptr(), endPos.ptr(), path.data(), int(path.size()), steerPath.data(),
|
|
steerPathFlags.data(), steerPathPolys.data(), &nsteerPath, maxSteerPoints);
|
|
assert(nsteerPath >= 0);
|
|
if (!nsteerPath)
|
|
return std::nullopt;
|
|
|
|
// Find vertex far enough to steer to.
|
|
std::size_t ns = 0;
|
|
while (ns < static_cast<std::size_t>(nsteerPath))
|
|
{
|
|
// Stop at Off-Mesh link or when point is further than slop away.
|
|
if ((steerPathFlags[ns] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ||
|
|
!inRange(Misc::Convert::makeOsgVec3f(&steerPath[ns * 3]), startPos, minTargetDist, 1000.0f))
|
|
break;
|
|
ns++;
|
|
}
|
|
// Failed to find good point to steer to.
|
|
if (ns >= static_cast<std::size_t>(nsteerPath))
|
|
return std::nullopt;
|
|
|
|
dtVcopy(result.steerPos.ptr(), &steerPath[ns * 3]);
|
|
result.steerPos.y() = startPos[1];
|
|
result.steerPosFlag = steerPathFlags[ns];
|
|
result.steerPosRef = steerPathPolys[ns];
|
|
|
|
return result;
|
|
}
|
|
|
|
dtPolyRef findNearestPolyExpanding(const dtNavMeshQuery& query, const dtQueryFilter& filter,
|
|
const osg::Vec3f& center, const osg::Vec3f& halfExtents)
|
|
{
|
|
dtPolyRef ref = 0;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
const dtStatus status = query.findNearestPoly(center.ptr(), (halfExtents * (1 << i)).ptr(), &filter, &ref, nullptr);
|
|
if (!dtStatusFailed(status) && ref != 0)
|
|
break;
|
|
}
|
|
return ref;
|
|
}
|
|
}
|