1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-06 00:55:50 +00:00
OpenMW/components/esmterrain/storage.hpp
2019-10-22 21:25:10 +03:00

244 lines
9.2 KiB
C++

#ifndef COMPONENTS_ESM_TERRAIN_STORAGE_H
#define COMPONENTS_ESM_TERRAIN_STORAGE_H
#include <cassert>
#include <OpenThreads/Mutex>
#include <osg/Image>
#include <osg/Plane>
#include <components/terrain/storage.hpp>
#include <components/esm/loadland.hpp>
#include <components/esm/loadltex.hpp>
namespace VFS
{
class Manager;
}
namespace ESMTerrain
{
/// @brief Wrapper around Land Data with reference counting. The wrapper needs to be held as long as the data is still in use
class LandObject : public osg::Object
{
public:
LandObject();
LandObject(const ESM::Land* land, int loadFlags);
LandObject(const LandObject& copy, const osg::CopyOp& copyop);
virtual ~LandObject();
META_Object(ESMTerrain, LandObject)
inline const ESM::Land::LandData* getData(int flags) const
{
if ((mData.mDataLoaded & flags) != flags)
return nullptr;
return &mData;
}
inline int getPlugin() const
{
return mLand->mPlugin;
}
private:
const ESM::Land* mLand;
int mLoadFlags;
ESM::Land::LandData mData;
};
class LandCache
{
public:
typedef std::map<std::pair<int, int>, osg::ref_ptr<const LandObject> > Map;
Map mMap;
};
/// @brief Feeds data from ESM terrain records (ESM::Land, ESM::LandTexture)
/// into the terrain component, converting it on the fly as needed.
class Storage : public Terrain::Storage
{
public:
Storage(const VFS::Manager* vfs, const std::string& normalMapPattern = "", const std::string& normalHeightMapPattern = "", bool autoUseNormalMaps = false, const std::string& specularMapPattern = "", bool autoUseSpecularMaps = false);
// Not implemented in this class, because we need different Store implementations for game and editor
virtual osg::ref_ptr<const LandObject> getLand (int cellX, int cellY)= 0;
virtual const ESM::LandTexture* getLandTexture(int index, short plugin) = 0;
/// Get bounds of the whole terrain in cell units
virtual void getBounds(float& minX, float& maxX, float& minY, float& maxY) = 0;
/// Get the minimum and maximum heights of a terrain region.
/// @note Will only be called for chunks with size = minBatchSize, i.e. leafs of the quad tree.
/// Larger chunks can simply merge AABB of children.
/// @param size size of the chunk in cell units
/// @param center center of the chunk in cell units
/// @param min min height will be stored here
/// @param max max height will be stored here
/// @return true if there was data available for this terrain chunk
virtual bool getMinMaxHeights (float size, const osg::Vec2f& center, float& min, float& max);
/// Fill vertex buffers for a terrain chunk.
/// @note May be called from background threads. Make sure to only call thread-safe functions from here!
/// @note Vertices should be written in row-major order (a row is defined as parallel to the x-axis).
/// The specified positions should be in local space, i.e. relative to the center of the terrain chunk.
/// @param lodLevel LOD level, 0 = most detailed
/// @param size size of the terrain chunk in cell units
/// @param center center of the chunk in cell units
/// @param positions buffer to write vertices
/// @param normals buffer to write vertex normals
/// @param colours buffer to write vertex colours
virtual void fillVertexBuffers (int lodLevel, float size, const osg::Vec2f& center,
osg::ref_ptr<osg::Vec3Array> positions,
osg::ref_ptr<osg::Vec3Array> normals,
osg::ref_ptr<osg::Vec4ubArray> colours);
/// Create textures holding layer blend values for a terrain chunk.
/// @note The terrain chunk shouldn't be larger than one cell since otherwise we might
/// have to do a ridiculous amount of different layers. For larger chunks, composite maps should be used.
/// @note May be called from background threads.
/// @param chunkSize size of the terrain chunk in cell units
/// @param chunkCenter center of the chunk in cell units
/// @param blendmaps created blendmaps will be written here
/// @param layerList names of the layer textures used will be written here
virtual void getBlendmaps (float chunkSize, const osg::Vec2f& chunkCenter, ImageVector& blendmaps,
std::vector<Terrain::LayerInfo>& layerList);
virtual float getHeightAt (const osg::Vec3f& worldPos);
/// Get the transformation factor for mapping cell units to world units.
virtual float getCellWorldSize();
/// Get the number of vertices on one side for each cell. Should be (power of two)+1
virtual int getCellVertices();
virtual int getBlendmapScale(float chunkSize);
private:
const VFS::Manager* mVFS;
// Since plugins can define new texture palettes, we need to know the plugin index too
// in order to retrieve the correct texture name.
// pair <texture id, plugin id>
typedef std::pair<short, short> UniqueTextureId;
inline UniqueTextureId getVtexIndexAt(int cellX, int cellY, int x, int y, LandCache&);
std::string getTextureName (UniqueTextureId id);
std::map<std::string, Terrain::LayerInfo> mLayerInfoMap;
OpenThreads::Mutex mLayerInfoMutex;
std::string mNormalMapPattern;
std::string mNormalHeightMapPattern;
bool mAutoUseNormalMaps;
std::string mSpecularMapPattern;
bool mAutoUseSpecularMaps;
Terrain::LayerInfo getLayerInfo(const std::string& texture);
protected:
inline void fixNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row, LandCache& cache)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData* data = land ? land->getData(ESM::Land::DATA_VNML) : 0;
if (data)
{
normal.x() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
};
inline void fixColour (osg::Vec4ub& color, int cellX, int cellY, int col, int row, LandCache& cache)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData* data = land ? land->getData(ESM::Land::DATA_VCLR) : 0;
if (data)
{
color.r() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3];
color.g() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1];
color.b() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2];
}
else
{
color.r() = 255;
color.g() = 255;
color.b() = 255;
}
};
inline void averageNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row, LandCache& cache)
{
osg::Vec3f n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row, cache);
fixNormal(n2, cellX, cellY, col-1, row, cache);
fixNormal(n3, cellX, cellY, col, row+1, cache);
fixNormal(n4, cellX, cellY, col, row-1, cache);
normal = (n1+n2+n3+n4);
normal.normalize();
};
inline float getVertexHeight (const ESM::Land::LandData* data, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return data->mHeights[y * ESM::Land::LAND_SIZE + x];
};
inline const LandObject* getLand(int cellX, int cellY, LandCache& cache)
{
LandCache::Map::iterator found = cache.mMap.find(std::make_pair(cellX, cellY));
if (found != cache.mMap.end())
return found->second;
else
{
found = cache.mMap.insert(std::make_pair(std::make_pair(cellX, cellY), getLand(cellX, cellY))).first;
return found->second;
}
};
};
}
#endif