1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-26 18:35:20 +00:00
OpenMW/apps/openmw/mwmechanics/pathgrid.cpp
2023-05-09 20:07:08 -04:00

314 lines
11 KiB
C++

#include "pathgrid.hpp"
#include <list>
#include <set>
namespace
{
// See https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
return 300.0f * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - Note that these may not be the best for directed
// graphs with non-uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
// return distance(a, b);
return manhattan(a, b);
}
constexpr size_t NoIndex = static_cast<size_t>(-1);
}
namespace MWMechanics
{
class PathgridGraph::Builder
{
std::vector<Node>& mGraph;
// variables used to calculate connected components
int mSCCId = 0;
size_t mSCCIndex = 0;
std::vector<size_t> mSCCStack;
std::vector<std::pair<size_t, size_t>> mSCCPoint; // first is index, second is lowlink
// v is the pathgrid point index (some call them vertices)
void recursiveStrongConnect(const size_t v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
size_t w;
for (const auto& edge : mGraph[v].edges)
{
w = edge.index;
if (mSCCPoint[w].first == NoIndex) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second, mSCCPoint[w].second);
}
else if (std::find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second, mSCCPoint[w].first);
}
if (mSCCPoint[v].second == mSCCPoint[v].first)
{ // new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mGraph[w].componentId = mSCCId;
} while (w != v);
mSCCId++;
}
}
public:
/*
* mGraph contains the strongly connected component group id's along
* with pre-calculated edge costs.
*
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
*
* mGraph for Seyda Neen will therefore have 3 different values. When
* selecting a random pathgrid point for AiWander, mGraph can be checked
* for quickly finding whether the destination is reachable.
*
* Otherwise, buildPath can automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm:
*
* mGraph | graph G |
* mSCCPoint | V | derived from mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | tracking smallest unused index
* mSCCStack | S |
* mGraph[v].edges[i].index | w |
*
*/
explicit Builder(PathgridGraph& graph)
: mGraph(graph.mGraph)
{
// both of these are set to zero in the constructor
// mSCCId = 0; // how many strongly connected components in this cell
// mSCCIndex = 0;
size_t pointsSize = graph.mPathgrid->mPoints.size();
mSCCPoint.resize(pointsSize, std::pair<size_t, size_t>(NoIndex, NoIndex));
mSCCStack.reserve(pointsSize);
for (size_t v = 0; v < pointsSize; ++v)
{
if (mSCCPoint[v].first == NoIndex) // undefined (haven't visited)
recursiveStrongConnect(v);
}
}
};
/*
* mGraph is populated with the cost of each allowed edge.
*
* The data structure is based on the code in buildPath2() but modified.
* Please check git history if interested.
*
* mGraph[v].edges[i].index = w
*
* v = point index of location "from"
* i = index of edges from point v
* w = point index of location "to"
*
*
* Example: (notice from p(0) to p(2) is not allowed in this example)
*
* mGraph[0].edges[0].index = 1
* .edges[1].index = 3
*
* mGraph[1].edges[0].index = 0
* .edges[1].index = 2
* .edges[2].index = 3
*
* mGraph[2].edges[0].index = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
PathgridGraph::PathgridGraph(const ESM::Pathgrid& pathgrid)
: mPathgrid(&pathgrid)
{
mGraph.resize(mPathgrid->mPoints.size());
for (const auto& edge : mPathgrid->mEdges)
{
ConnectedPoint neighbour;
neighbour.cost = costAStar(mPathgrid->mPoints[edge.mV0], mPathgrid->mPoints[edge.mV1]);
// forward path of the edge
neighbour.index = edge.mV1;
mGraph[edge.mV0].edges.push_back(neighbour);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
// neighbour.index = edge.mV0;
// mGraph[edge.mV1].edges.push_back(neighbour);
}
Builder(*this);
}
const PathgridGraph PathgridGraph::sEmpty = {};
bool PathgridGraph::isPointConnected(const size_t start, const size_t end) const
{
return (mGraph[start].componentId == mGraph[end].componentId);
}
void PathgridGraph::getNeighbouringPoints(const size_t index, ESM::Pathgrid::PointList& nodes) const
{
for (const auto& edge : mGraph[index].edges)
{
if (edge.index != index)
nodes.push_back(mPathgrid->mPoints[edge.index]);
}
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider using a 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed.
*
* Should be possible to make this MT safe.
*
* Returns path which may be empty. path contains pathgrid points in local
* cell coordinates (indoors) or world coordinates (external).
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
* gScore - past accumulated costs vector indexed by point index
* fScore - future estimated costs vector indexed by point index
*
* TODO: An interesting exercise might be to cache the paths created for a
* start/goal pair. To cache the results the paths need to be in
* pathgrid points form (currently they are converted to world
* coordinates). Essentially trading speed w/ memory.
*/
std::deque<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const size_t start, const size_t goal) const
{
std::deque<ESM::Pathgrid::Point> path;
if (!isPointConnected(start, goal))
{
return path; // there is no path, return an empty path
}
size_t graphSize = mGraph.size();
std::vector<float> gScore(graphSize, -1);
std::vector<float> fScore(graphSize, -1);
std::vector<size_t> graphParent(graphSize, NoIndex);
// gScore & fScore keep costs for each pathgrid point in mPoints
gScore[start] = 0;
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
std::list<size_t> openset;
std::set<size_t> closedset;
openset.push_back(start);
size_t current = start;
while (!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if (current == goal)
break;
closedset.insert(current); // remember we've been here
// check all edges for the current point index
for (const auto& edge : mGraph[current].edges)
{
if (!closedset.contains(edge.index))
{
// not in closedset - i.e. have not traversed this edge destination
size_t dest = edge.index;
float tentative_g = gScore[current] + edge.cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if (!isInOpenSet || tentative_g < gScore[dest])
{
graphParent[dest] = current;
gScore[dest] = tentative_g;
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest], mPathgrid->mPoints[goal]);
if (!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
auto it = openset.begin();
for (; it != openset.end(); ++it)
{
if (fScore[*it] > fScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
if (current != goal)
return path; // for some reason couldn't build a path
// reconstruct path to return, using local coordinates
while (graphParent[current] != NoIndex)
{
path.push_front(mPathgrid->mPoints[current]);
current = graphParent[current];
}
// add first node to path explicitly
path.push_front(mPathgrid->mPoints[start]);
return path;
}
}