1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-27 03:35:27 +00:00
OpenMW/apps/openmw/mwphysics/mtphysics.cpp
fredzio b04c958410 Modify the way swimming is handled:
- compute the swimming state instead of storing it, it changes as part of the simulation and was not updated, so it was wrong anyway.
- store the swim level in ActorFrameData, it is constant per Actor so no need to compute it inside the simulation
2021-08-07 13:38:24 +02:00

607 lines
23 KiB
C++

#include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
#include <BulletCollision/CollisionShapes/btCollisionShape.h>
#include <osg/Stats>
#include "components/debug/debuglog.hpp"
#include <components/misc/barrier.hpp>
#include "components/misc/convert.hpp"
#include "components/settings/settings.hpp"
#include "../mwmechanics/actorutil.hpp"
#include "../mwmechanics/movement.hpp"
#include "../mwrender/bulletdebugdraw.hpp"
#include "../mwworld/class.hpp"
#include "actor.hpp"
#include "contacttestwrapper.h"
#include "movementsolver.hpp"
#include "mtphysics.hpp"
#include "object.hpp"
#include "physicssystem.hpp"
#include "projectile.hpp"
namespace
{
/// @brief A scoped lock that is either shared or exclusive depending on configuration
template<class Mutex>
class MaybeSharedLock
{
public:
/// @param mutex a shared mutex
/// @param canBeSharedLock decide wether the lock will be shared or exclusive
MaybeSharedLock(Mutex& mutex, bool canBeSharedLock) : mMutex(mutex), mCanBeSharedLock(canBeSharedLock)
{
if (mCanBeSharedLock)
mMutex.lock_shared();
else
mMutex.lock();
}
~MaybeSharedLock()
{
if (mCanBeSharedLock)
mMutex.unlock_shared();
else
mMutex.unlock();
}
private:
Mutex& mMutex;
bool mCanBeSharedLock;
};
bool isUnderWater(const MWPhysics::ActorFrameData& actorData)
{
return actorData.mPosition.z() < actorData.mSwimLevel;
}
void handleFall(MWPhysics::ActorFrameData& actorData, bool simulationPerformed)
{
const float heightDiff = actorData.mPosition.z() - actorData.mOldHeight;
const bool isStillOnGround = (simulationPerformed && actorData.mWasOnGround && actorData.mIsOnGround);
if (isStillOnGround || actorData.mFlying || isUnderWater(actorData) || actorData.mSlowFall < 1)
actorData.mNeedLand = true;
else if (heightDiff < 0)
actorData.mFallHeight += heightDiff;
}
void updateMechanics(MWPhysics::ActorFrameData& actorData)
{
auto ptr = actorData.mActorRaw->getPtr();
MWMechanics::CreatureStats& stats = ptr.getClass().getCreatureStats(ptr);
if (actorData.mNeedLand)
stats.land(ptr == MWMechanics::getPlayer() && (actorData.mFlying || isUnderWater(actorData)));
else if (actorData.mFallHeight < 0)
stats.addToFallHeight(-actorData.mFallHeight);
}
osg::Vec3f interpolateMovements(MWPhysics::ActorFrameData& actorData, float timeAccum, float physicsDt)
{
const float interpolationFactor = std::clamp(timeAccum / physicsDt, 0.0f, 1.0f);
return actorData.mPosition * interpolationFactor + actorData.mActorRaw->getPreviousPosition() * (1.f - interpolationFactor);
}
namespace Config
{
/// @return either the number of thread as configured by the user, or 1 if Bullet doesn't support multithreading
int computeNumThreads(bool& threadSafeBullet)
{
int wantedThread = Settings::Manager::getInt("async num threads", "Physics");
auto broad = std::make_unique<btDbvtBroadphase>();
auto maxSupportedThreads = broad->m_rayTestStacks.size();
threadSafeBullet = (maxSupportedThreads > 1);
if (!threadSafeBullet && wantedThread > 1)
{
Log(Debug::Warning) << "Bullet was not compiled with multithreading support, 1 async thread will be used";
return 1;
}
return std::max(0, wantedThread);
}
}
}
namespace MWPhysics
{
PhysicsTaskScheduler::PhysicsTaskScheduler(float physicsDt, btCollisionWorld *collisionWorld, MWRender::DebugDrawer* debugDrawer)
: mDefaultPhysicsDt(physicsDt)
, mPhysicsDt(physicsDt)
, mTimeAccum(0.f)
, mCollisionWorld(collisionWorld)
, mDebugDrawer(debugDrawer)
, mNumJobs(0)
, mRemainingSteps(0)
, mLOSCacheExpiry(Settings::Manager::getInt("lineofsight keep inactive cache", "Physics"))
, mNewFrame(false)
, mAdvanceSimulation(false)
, mQuit(false)
, mNextJob(0)
, mNextLOS(0)
, mFrameNumber(0)
, mTimer(osg::Timer::instance())
, mPrevStepCount(1)
, mBudget(physicsDt)
, mAsyncBudget(0.0f)
, mBudgetCursor(0)
, mAsyncStartTime(0)
, mTimeBegin(0)
, mTimeEnd(0)
, mFrameStart(0)
{
mNumThreads = Config::computeNumThreads(mThreadSafeBullet);
if (mNumThreads >= 1)
{
for (int i = 0; i < mNumThreads; ++i)
mThreads.emplace_back([&] { worker(); } );
}
else
{
mLOSCacheExpiry = 0;
}
mPreStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostSimBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
}
PhysicsTaskScheduler::~PhysicsTaskScheduler()
{
std::unique_lock lock(mSimulationMutex);
mQuit = true;
mNumJobs = 0;
mRemainingSteps = 0;
lock.unlock();
mHasJob.notify_all();
for (auto& thread : mThreads)
thread.join();
}
std::tuple<int, float> PhysicsTaskScheduler::calculateStepConfig(float timeAccum) const
{
int maxAllowedSteps = 2;
int numSteps = timeAccum / mDefaultPhysicsDt;
// adjust maximum step count based on whether we're likely physics bottlenecked or not
// if maxAllowedSteps ends up higher than numSteps, we will not invoke delta time
// if it ends up lower than numSteps, but greater than 1, we will run a number of true delta time physics steps that we expect to be within budget
// if it ends up lower than numSteps and also 1, we will run a single delta time physics step
// if we did not do this, and had a fixed step count limit,
// we would have an unnecessarily low render framerate if we were only physics bottlenecked,
// and we would be unnecessarily invoking true delta time if we were only render bottlenecked
// get physics timing stats
float budgetMeasurement = std::max(mBudget.get(), mAsyncBudget.get());
// time spent per step in terms of the intended physics framerate
budgetMeasurement /= mDefaultPhysicsDt;
// ensure sane minimum value
budgetMeasurement = std::max(0.00001f, budgetMeasurement);
// we're spending almost or more than realtime per physics frame; limit to a single step
if (budgetMeasurement > 0.95)
maxAllowedSteps = 1;
// physics is fairly cheap; limit based on expense
if (budgetMeasurement < 0.5)
maxAllowedSteps = std::ceil(1.0/budgetMeasurement);
// limit to a reasonable amount
maxAllowedSteps = std::min(10, maxAllowedSteps);
// fall back to delta time for this frame if fixed timestep physics would fall behind
float actualDelta = mDefaultPhysicsDt;
if (numSteps > maxAllowedSteps)
{
numSteps = maxAllowedSteps;
// ensure that we do not simulate a frame ahead when doing delta time; this reduces stutter and latency
// this causes interpolation to 100% use the most recent physics result when true delta time is happening
// and we deliberately simulate up to exactly the timestamp that we want to render
actualDelta = timeAccum/float(numSteps+1);
// actually: if this results in a per-step delta less than the target physics steptime, clamp it
// this might reintroduce some stutter, but only comes into play in obscure cases
// (because numSteps is originally based on mDefaultPhysicsDt, this won't cause us to overrun)
actualDelta = std::max(actualDelta, mDefaultPhysicsDt);
}
return std::make_tuple(numSteps, actualDelta);
}
void PhysicsTaskScheduler::applyQueuedMovements(float & timeAccum, std::vector<ActorFrameData>&& actorsData, osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
// This function run in the main thread.
// While the mSimulationMutex is held, background physics threads can't run.
std::unique_lock lock(mSimulationMutex);
double timeStart = mTimer->tick();
// start by finishing previous background computation
if (mNumThreads != 0)
{
for (auto& data : mActorsFrameData)
{
const auto actorActive = [&data](const auto& newFrameData) -> bool
{
const auto actor = data.mActor.lock();
return actor && actor->getPtr() == newFrameData.mActorRaw->getPtr();
};
// Only return actors that are still part of the scene
if (std::any_of(actorsData.begin(), actorsData.end(), actorActive))
{
updateMechanics(data);
// these variables are accessed directly from the main thread, update them here to prevent accessing "too new" values
if (mAdvanceSimulation)
{
data.mActorRaw->setStandingOnPtr(data.mStandingOn);
data.mActorRaw->setOnGround(data.mIsOnGround);
data.mActorRaw->setOnSlope(data.mIsOnSlope);
data.mActorRaw->setWalkingOnWater(data.mWalkingOnWater);
}
data.mActorRaw->setSimulationPosition(interpolateMovements(data, mTimeAccum, mPhysicsDt));
}
}
if(mAdvanceSimulation)
mAsyncBudget.update(mTimer->delta_s(mAsyncStartTime, mTimeEnd), mPrevStepCount, mBudgetCursor);
updateStats(frameStart, frameNumber, stats);
}
auto [numSteps, newDelta] = calculateStepConfig(timeAccum);
timeAccum -= numSteps*newDelta;
// init
for (auto& data : actorsData)
data.updatePosition(mCollisionWorld);
mPrevStepCount = numSteps;
mRemainingSteps = numSteps;
mTimeAccum = timeAccum;
mPhysicsDt = newDelta;
mActorsFrameData = std::move(actorsData);
mAdvanceSimulation = (mRemainingSteps != 0);
mNewFrame = true;
mNumJobs = mActorsFrameData.size();
mNextLOS.store(0, std::memory_order_relaxed);
mNextJob.store(0, std::memory_order_release);
if (mAdvanceSimulation)
mWorldFrameData = std::make_unique<WorldFrameData>();
if (mAdvanceSimulation)
mBudgetCursor += 1;
if (mNumThreads == 0)
{
syncComputation();
if(mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), numSteps, mBudgetCursor);
return;
}
mAsyncStartTime = mTimer->tick();
lock.unlock();
mHasJob.notify_all();
if (mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), 1, mBudgetCursor);
}
void PhysicsTaskScheduler::resetSimulation(const ActorMap& actors)
{
std::unique_lock lock(mSimulationMutex);
mBudget.reset(mDefaultPhysicsDt);
mAsyncBudget.reset(0.0f);
mActorsFrameData.clear();
for (const auto& [_, actor] : actors)
{
actor->updatePosition();
actor->updateCollisionObjectPosition();
}
}
void PhysicsTaskScheduler::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
{
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
mCollisionWorld->rayTest(rayFromWorld, rayToWorld, resultCallback);
}
void PhysicsTaskScheduler::convexSweepTest(const btConvexShape* castShape, const btTransform& from, const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const
{
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
mCollisionWorld->convexSweepTest(castShape, from, to, resultCallback);
}
void PhysicsTaskScheduler::contactTest(btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback)
{
std::shared_lock lock(mCollisionWorldMutex);
ContactTestWrapper::contactTest(mCollisionWorld, colObj, resultCallback);
}
std::optional<btVector3> PhysicsTaskScheduler::getHitPoint(const btTransform& from, btCollisionObject* target)
{
MaybeSharedLock lock(mCollisionWorldMutex, mThreadSafeBullet);
// target the collision object's world origin, this should be the center of the collision object
btTransform rayTo;
rayTo.setIdentity();
rayTo.setOrigin(target->getWorldTransform().getOrigin());
btCollisionWorld::ClosestRayResultCallback cb(from.getOrigin(), rayTo.getOrigin());
mCollisionWorld->rayTestSingle(from, rayTo, target, target->getCollisionShape(), target->getWorldTransform(), cb);
if (!cb.hasHit())
// didn't hit the target. this could happen if point is already inside the collision box
return std::nullopt;
return {cb.m_hitPointWorld};
}
void PhysicsTaskScheduler::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
std::shared_lock lock(mCollisionWorldMutex);
mCollisionWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, callback);
}
void PhysicsTaskScheduler::getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max)
{
std::shared_lock lock(mCollisionWorldMutex);
obj->getCollisionShape()->getAabb(obj->getWorldTransform(), min, max);
}
void PhysicsTaskScheduler::setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask)
{
std::unique_lock lock(mCollisionWorldMutex);
collisionObject->getBroadphaseHandle()->m_collisionFilterMask = collisionFilterMask;
}
void PhysicsTaskScheduler::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
{
std::unique_lock lock(mCollisionWorldMutex);
mCollisionWorld->addCollisionObject(collisionObject, collisionFilterGroup, collisionFilterMask);
}
void PhysicsTaskScheduler::removeCollisionObject(btCollisionObject* collisionObject)
{
std::unique_lock lock(mCollisionWorldMutex);
mCollisionWorld->removeCollisionObject(collisionObject);
}
void PhysicsTaskScheduler::updateSingleAabb(std::weak_ptr<PtrHolder> ptr, bool immediate)
{
if (immediate || mNumThreads == 0)
{
updatePtrAabb(ptr);
}
else
{
std::unique_lock lock(mUpdateAabbMutex);
mUpdateAabb.insert(std::move(ptr));
}
}
bool PhysicsTaskScheduler::getLineOfSight(const std::weak_ptr<Actor>& actor1, const std::weak_ptr<Actor>& actor2)
{
std::unique_lock lock(mLOSCacheMutex);
auto actorPtr1 = actor1.lock();
auto actorPtr2 = actor2.lock();
if (!actorPtr1 || !actorPtr2)
return false;
auto req = LOSRequest(actor1, actor2);
auto result = std::find(mLOSCache.begin(), mLOSCache.end(), req);
if (result == mLOSCache.end())
{
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
mLOSCache.push_back(req);
return req.mResult;
}
result->mAge = 0;
return result->mResult;
}
void PhysicsTaskScheduler::refreshLOSCache()
{
std::shared_lock lock(mLOSCacheMutex);
int job = 0;
int numLOS = mLOSCache.size();
while ((job = mNextLOS.fetch_add(1, std::memory_order_relaxed)) < numLOS)
{
auto& req = mLOSCache[job];
auto actorPtr1 = req.mActors[0].lock();
auto actorPtr2 = req.mActors[1].lock();
if (req.mAge++ > mLOSCacheExpiry || !actorPtr1 || !actorPtr2)
req.mStale = true;
else
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
}
}
void PhysicsTaskScheduler::updateAabbs()
{
std::scoped_lock lock(mUpdateAabbMutex);
std::for_each(mUpdateAabb.begin(), mUpdateAabb.end(),
[this](const std::weak_ptr<PtrHolder>& ptr) { updatePtrAabb(ptr); });
mUpdateAabb.clear();
}
void PhysicsTaskScheduler::updatePtrAabb(const std::weak_ptr<PtrHolder>& ptr)
{
if (const auto p = ptr.lock())
{
std::scoped_lock lock(mCollisionWorldMutex);
if (const auto actor = std::dynamic_pointer_cast<Actor>(p))
{
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
else if (const auto object = std::dynamic_pointer_cast<Object>(p))
{
object->commitPositionChange();
mCollisionWorld->updateSingleAabb(object->getCollisionObject());
}
else if (const auto projectile = std::dynamic_pointer_cast<Projectile>(p))
{
projectile->commitPositionChange();
mCollisionWorld->updateSingleAabb(projectile->getCollisionObject());
}
};
}
void PhysicsTaskScheduler::worker()
{
std::shared_lock lock(mSimulationMutex);
while (!mQuit)
{
if (!mNewFrame)
mHasJob.wait(lock, [&]() { return mQuit || mNewFrame; });
mPreStepBarrier->wait([this] { afterPreStep(); });
int job = 0;
while (mRemainingSteps && (job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
{
if(const auto actor = mActorsFrameData[job].mActor.lock())
{
MaybeSharedLock lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
MovementSolver::move(mActorsFrameData[job], mPhysicsDt, mCollisionWorld, *mWorldFrameData);
}
}
mPostStepBarrier->wait([this] { afterPostStep(); });
if (!mRemainingSteps)
{
while ((job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
{
if(const auto actor = mActorsFrameData[job].mActor.lock())
{
auto& actorData = mActorsFrameData[job];
handleFall(actorData, mAdvanceSimulation);
}
}
refreshLOSCache();
mPostSimBarrier->wait([this] { afterPostSim(); });
}
}
}
void PhysicsTaskScheduler::updateActorsPositions()
{
for (auto& actorData : mActorsFrameData)
{
if(const auto actor = actorData.mActor.lock())
{
if (actor->setPosition(actorData.mPosition))
{
std::scoped_lock lock(mCollisionWorldMutex);
actorData.mPosition = actor->getPosition(); // account for potential position change made by script
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
}
}
}
bool PhysicsTaskScheduler::hasLineOfSight(const Actor* actor1, const Actor* actor2)
{
btVector3 pos1 = Misc::Convert::toBullet(actor1->getCollisionObjectPosition() + osg::Vec3f(0,0,actor1->getHalfExtents().z() * 0.9)); // eye level
btVector3 pos2 = Misc::Convert::toBullet(actor2->getCollisionObjectPosition() + osg::Vec3f(0,0,actor2->getHalfExtents().z() * 0.9));
btCollisionWorld::ClosestRayResultCallback resultCallback(pos1, pos2);
resultCallback.m_collisionFilterGroup = 0xFF;
resultCallback.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap|CollisionType_Door;
MaybeSharedLock lockColWorld(mCollisionWorldMutex, mThreadSafeBullet);
mCollisionWorld->rayTest(pos1, pos2, resultCallback);
return !resultCallback.hasHit();
}
void PhysicsTaskScheduler::syncComputation()
{
while (mRemainingSteps--)
{
for (auto& actorData : mActorsFrameData)
{
MovementSolver::unstuck(actorData, mCollisionWorld);
MovementSolver::move(actorData, mPhysicsDt, mCollisionWorld, *mWorldFrameData);
}
updateActorsPositions();
}
for (auto& actorData : mActorsFrameData)
{
handleFall(actorData, mAdvanceSimulation);
actorData.mActorRaw->setSimulationPosition(interpolateMovements(actorData, mTimeAccum, mPhysicsDt));
updateMechanics(actorData);
if (mAdvanceSimulation)
{
actorData.mActorRaw->setStandingOnPtr(actorData.mStandingOn);
actorData.mActorRaw->setOnGround(actorData.mIsOnGround);
actorData.mActorRaw->setOnSlope(actorData.mIsOnSlope);
actorData.mActorRaw->setWalkingOnWater(actorData.mWalkingOnWater);
}
}
refreshLOSCache();
}
void PhysicsTaskScheduler::updateStats(osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
if (!stats.collectStats("engine"))
return;
if (mFrameNumber == frameNumber - 1)
{
stats.setAttribute(mFrameNumber, "physicsworker_time_begin", mTimer->delta_s(mFrameStart, mTimeBegin));
stats.setAttribute(mFrameNumber, "physicsworker_time_taken", mTimer->delta_s(mTimeBegin, mTimeEnd));
stats.setAttribute(mFrameNumber, "physicsworker_time_end", mTimer->delta_s(mFrameStart, mTimeEnd));
}
mFrameStart = frameStart;
mTimeBegin = mTimer->tick();
mFrameNumber = frameNumber;
}
void PhysicsTaskScheduler::debugDraw()
{
std::shared_lock lock(mCollisionWorldMutex);
mDebugDrawer->step();
}
void PhysicsTaskScheduler::afterPreStep()
{
updateAabbs();
if (!mRemainingSteps)
return;
for (auto& data : mActorsFrameData)
if (const auto actor = data.mActor.lock())
{
std::unique_lock lock(mCollisionWorldMutex);
MovementSolver::unstuck(data, mCollisionWorld);
}
}
void PhysicsTaskScheduler::afterPostStep()
{
if (mRemainingSteps)
{
--mRemainingSteps;
updateActorsPositions();
}
mNextJob.store(0, std::memory_order_release);
}
void PhysicsTaskScheduler::afterPostSim()
{
mNewFrame = false;
{
std::unique_lock lock(mLOSCacheMutex);
mLOSCache.erase(
std::remove_if(mLOSCache.begin(), mLOSCache.end(),
[](const LOSRequest& req) { return req.mStale; }),
mLOSCache.end());
}
mTimeEnd = mTimer->tick();
}
}