1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-28 14:53:58 +00:00
OpenMW/apps/openmw/mwphysics/mtphysics.cpp
2022-10-09 16:44:18 +02:00

816 lines
31 KiB
C++

#include "mtphysics.hpp"
#include <cassert>
#include <functional>
#include <mutex>
#include <optional>
#include <shared_mutex>
#include <variant>
#include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
#include <BulletCollision/CollisionShapes/btCollisionShape.h>
#include <osg/Stats>
#include "components/debug/debuglog.hpp"
#include "components/misc/convert.hpp"
#include "components/settings/settings.hpp"
#include <components/misc/barrier.hpp>
#include "../mwmechanics/actorutil.hpp"
#include "../mwmechanics/creaturestats.hpp"
#include "../mwrender/bulletdebugdraw.hpp"
#include "../mwworld/class.hpp"
#include "../mwbase/environment.hpp"
#include "../mwbase/world.hpp"
#include "actor.hpp"
#include "contacttestwrapper.h"
#include "movementsolver.hpp"
#include "object.hpp"
#include "physicssystem.hpp"
#include "projectile.hpp"
namespace
{
template <class Mutex>
std::optional<std::unique_lock<Mutex>> makeExclusiveLock(Mutex& mutex, unsigned threadCount)
{
if (threadCount > 0)
return std::unique_lock(mutex);
return {};
}
/// @brief A scoped lock that is either exclusive or inexistent depending on configuration
template <class Mutex>
class MaybeExclusiveLock
{
public:
/// @param mutex a mutex
/// @param threadCount decide wether the excluse lock will be taken
explicit MaybeExclusiveLock(Mutex& mutex, unsigned threadCount)
: mImpl(makeExclusiveLock(mutex, threadCount))
{
}
private:
std::optional<std::unique_lock<Mutex>> mImpl;
};
template <class Mutex>
std::optional<std::shared_lock<Mutex>> makeSharedLock(Mutex& mutex, unsigned threadCount)
{
if (threadCount > 0)
return std::shared_lock(mutex);
return {};
}
/// @brief A scoped lock that is either shared or inexistent depending on configuration
template <class Mutex>
class MaybeSharedLock
{
public:
/// @param mutex a shared mutex
/// @param threadCount decide wether the shared lock will be taken
explicit MaybeSharedLock(Mutex& mutex, unsigned threadCount)
: mImpl(makeSharedLock(mutex, threadCount))
{
}
private:
std::optional<std::shared_lock<Mutex>> mImpl;
};
template <class Mutex>
std::variant<std::monostate, std::unique_lock<Mutex>, std::shared_lock<Mutex>> makeLock(
Mutex& mutex, unsigned threadCount)
{
if (threadCount > 1)
return std::shared_lock(mutex);
if (threadCount == 1)
return std::unique_lock(mutex);
return std::monostate{};
}
/// @brief A scoped lock that is either shared, exclusive or inexistent depending on configuration
template <class Mutex>
class MaybeLock
{
public:
/// @param mutex a shared mutex
/// @param threadCount decide wether the lock will be shared, exclusive or inexistent
explicit MaybeLock(Mutex& mutex, unsigned threadCount)
: mImpl(makeLock(mutex, threadCount))
{
}
private:
std::variant<std::monostate, std::unique_lock<Mutex>, std::shared_lock<Mutex>> mImpl;
};
bool isUnderWater(const MWPhysics::ActorFrameData& actorData)
{
return actorData.mPosition.z() < actorData.mSwimLevel;
}
osg::Vec3f interpolateMovements(const MWPhysics::PtrHolder& ptr, float timeAccum, float physicsDt)
{
const float interpolationFactor = std::clamp(timeAccum / physicsDt, 0.0f, 1.0f);
return ptr.getPosition() * interpolationFactor + ptr.getPreviousPosition() * (1.f - interpolationFactor);
}
using LockedActorSimulation
= std::pair<std::shared_ptr<MWPhysics::Actor>, std::reference_wrapper<MWPhysics::ActorFrameData>>;
using LockedProjectileSimulation
= std::pair<std::shared_ptr<MWPhysics::Projectile>, std::reference_wrapper<MWPhysics::ProjectileFrameData>>;
namespace Visitors
{
template <class Impl, template <class> class Lock>
struct WithLockedPtr
{
const Impl& mImpl;
std::shared_mutex& mCollisionWorldMutex;
const unsigned mNumThreads;
template <class Ptr, class FrameData>
void operator()(MWPhysics::SimulationImpl<Ptr, FrameData>& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto&& [ptr, frameData] = *std::move(locked);
// Locked shared_ptr has to be destructed after releasing mCollisionWorldMutex to avoid
// possible deadlock. Ptr destructor also acquires mCollisionWorldMutex.
const std::pair arg(std::move(ptr), frameData);
const Lock<std::shared_mutex> lock(mCollisionWorldMutex, mNumThreads);
mImpl(arg);
}
};
struct InitPosition
{
const btCollisionWorld* mCollisionWorld;
void operator()(MWPhysics::ActorSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [actor, frameDataRef] = *locked;
auto& frameData = frameDataRef.get();
actor->applyOffsetChange();
frameData.mPosition = actor->getPosition();
if (frameData.mWaterCollision && frameData.mPosition.z() < frameData.mWaterlevel
&& actor->canMoveToWaterSurface(frameData.mWaterlevel, mCollisionWorld))
{
const auto offset = osg::Vec3f(0, 0, frameData.mWaterlevel - frameData.mPosition.z());
MWBase::Environment::get().getWorld()->moveObjectBy(actor->getPtr(), offset);
actor->applyOffsetChange();
frameData.mPosition = actor->getPosition();
}
frameData.mOldHeight = frameData.mPosition.z();
const auto rotation = actor->getPtr().getRefData().getPosition().asRotationVec3();
frameData.mRotation = osg::Vec2f(rotation.x(), rotation.z());
frameData.mInertia = actor->getInertialForce();
frameData.mStuckFrames = actor->getStuckFrames();
frameData.mLastStuckPosition = actor->getLastStuckPosition();
}
void operator()(MWPhysics::ProjectileSimulation& /*sim*/) const {}
};
struct PreStep
{
btCollisionWorld* mCollisionWorld;
void operator()(const LockedActorSimulation& sim) const
{
MWPhysics::MovementSolver::unstuck(sim.second, mCollisionWorld);
}
void operator()(const LockedProjectileSimulation& /*sim*/) const {}
};
struct UpdatePosition
{
btCollisionWorld* mCollisionWorld;
void operator()(const LockedActorSimulation& sim) const
{
auto& [actor, frameDataRef] = sim;
auto& frameData = frameDataRef.get();
if (actor->setPosition(frameData.mPosition))
{
frameData.mPosition = actor->getPosition(); // account for potential position change made by script
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
}
void operator()(const LockedProjectileSimulation& sim) const
{
auto& [proj, frameDataRef] = sim;
auto& frameData = frameDataRef.get();
proj->setPosition(frameData.mPosition);
proj->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(proj->getCollisionObject());
}
};
struct Move
{
const float mPhysicsDt;
const btCollisionWorld* mCollisionWorld;
const MWPhysics::WorldFrameData& mWorldFrameData;
void operator()(const LockedActorSimulation& sim) const
{
MWPhysics::MovementSolver::move(sim.second, mPhysicsDt, mCollisionWorld, mWorldFrameData);
}
void operator()(const LockedProjectileSimulation& sim) const
{
if (sim.first->isActive())
MWPhysics::MovementSolver::move(sim.second, mPhysicsDt, mCollisionWorld);
}
};
struct Sync
{
const bool mAdvanceSimulation;
const float mTimeAccum;
const float mPhysicsDt;
const MWPhysics::PhysicsTaskScheduler* scheduler;
void operator()(MWPhysics::ActorSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [actor, frameDataRef] = *locked;
auto& frameData = frameDataRef.get();
auto ptr = actor->getPtr();
MWMechanics::CreatureStats& stats = ptr.getClass().getCreatureStats(ptr);
const float heightDiff = frameData.mPosition.z() - frameData.mOldHeight;
const bool isStillOnGround = (mAdvanceSimulation && frameData.mWasOnGround && frameData.mIsOnGround);
if (isStillOnGround || frameData.mFlying || isUnderWater(frameData) || frameData.mSlowFall < 1)
stats.land(ptr == MWMechanics::getPlayer() && (frameData.mFlying || isUnderWater(frameData)));
else if (heightDiff < 0)
stats.addToFallHeight(-heightDiff);
actor->setSimulationPosition(::interpolateMovements(*actor, mTimeAccum, mPhysicsDt));
actor->setLastStuckPosition(frameData.mLastStuckPosition);
actor->setStuckFrames(frameData.mStuckFrames);
if (mAdvanceSimulation)
{
MWWorld::Ptr standingOn;
auto* ptrHolder
= static_cast<MWPhysics::PtrHolder*>(scheduler->getUserPointer(frameData.mStandingOn));
if (ptrHolder)
standingOn = ptrHolder->getPtr();
actor->setStandingOnPtr(standingOn);
// the "on ground" state of an actor might have been updated by a traceDown, don't overwrite the
// change
if (actor->getOnGround() == frameData.mWasOnGround)
actor->setOnGround(frameData.mIsOnGround);
actor->setOnSlope(frameData.mIsOnSlope);
actor->setWalkingOnWater(frameData.mWalkingOnWater);
actor->setInertialForce(frameData.mInertia);
}
}
void operator()(MWPhysics::ProjectileSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [proj, frameData] = *locked;
proj->setSimulationPosition(::interpolateMovements(*proj, mTimeAccum, mPhysicsDt));
}
};
}
namespace Config
{
/// @return either the number of thread as configured by the user, or 1 if Bullet doesn't support multithreading
/// and user requested more than 1 background threads
unsigned computeNumThreads()
{
int wantedThread = Settings::Manager::getInt("async num threads", "Physics");
auto broad = std::make_unique<btDbvtBroadphase>();
auto maxSupportedThreads = broad->m_rayTestStacks.size();
auto threadSafeBullet = (maxSupportedThreads > 1);
if (!threadSafeBullet && wantedThread > 1)
{
Log(Debug::Warning)
<< "Bullet was not compiled with multithreading support, 1 async thread will be used";
return 1;
}
return static_cast<unsigned>(std::max(0, wantedThread));
}
}
}
namespace MWPhysics
{
PhysicsTaskScheduler::PhysicsTaskScheduler(
float physicsDt, btCollisionWorld* collisionWorld, MWRender::DebugDrawer* debugDrawer)
: mDefaultPhysicsDt(physicsDt)
, mPhysicsDt(physicsDt)
, mTimeAccum(0.f)
, mCollisionWorld(collisionWorld)
, mDebugDrawer(debugDrawer)
, mNumThreads(Config::computeNumThreads())
, mNumJobs(0)
, mRemainingSteps(0)
, mLOSCacheExpiry(Settings::Manager::getInt("lineofsight keep inactive cache", "Physics"))
, mFrameCounter(0)
, mAdvanceSimulation(false)
, mQuit(false)
, mNextJob(0)
, mNextLOS(0)
, mFrameNumber(0)
, mTimer(osg::Timer::instance())
, mPrevStepCount(1)
, mBudget(physicsDt)
, mAsyncBudget(0.0f)
, mBudgetCursor(0)
, mAsyncStartTime(0)
, mTimeBegin(0)
, mTimeEnd(0)
, mFrameStart(0)
{
if (mNumThreads >= 1)
{
for (unsigned i = 0; i < mNumThreads; ++i)
mThreads.emplace_back([&] { worker(); });
}
else
{
mLOSCacheExpiry = 0;
}
mPreStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostSimBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
}
PhysicsTaskScheduler::~PhysicsTaskScheduler()
{
waitForWorkers();
{
MaybeExclusiveLock lock(mSimulationMutex, mNumThreads);
mQuit = true;
mNumJobs = 0;
mRemainingSteps = 0;
mHasJob.notify_all();
}
for (auto& thread : mThreads)
thread.join();
}
std::tuple<int, float> PhysicsTaskScheduler::calculateStepConfig(float timeAccum) const
{
int maxAllowedSteps = 2;
int numSteps = timeAccum / mDefaultPhysicsDt;
// adjust maximum step count based on whether we're likely physics bottlenecked or not
// if maxAllowedSteps ends up higher than numSteps, we will not invoke delta time
// if it ends up lower than numSteps, but greater than 1, we will run a number of true delta time physics steps
// that we expect to be within budget if it ends up lower than numSteps and also 1, we will run a single delta
// time physics step if we did not do this, and had a fixed step count limit, we would have an unnecessarily low
// render framerate if we were only physics bottlenecked, and we would be unnecessarily invoking true delta time
// if we were only render bottlenecked
// get physics timing stats
float budgetMeasurement = std::max(mBudget.get(), mAsyncBudget.get());
// time spent per step in terms of the intended physics framerate
budgetMeasurement /= mDefaultPhysicsDt;
// ensure sane minimum value
budgetMeasurement = std::max(0.00001f, budgetMeasurement);
// we're spending almost or more than realtime per physics frame; limit to a single step
if (budgetMeasurement > 0.95)
maxAllowedSteps = 1;
// physics is fairly cheap; limit based on expense
if (budgetMeasurement < 0.5)
maxAllowedSteps = std::ceil(1.0 / budgetMeasurement);
// limit to a reasonable amount
maxAllowedSteps = std::min(10, maxAllowedSteps);
// fall back to delta time for this frame if fixed timestep physics would fall behind
float actualDelta = mDefaultPhysicsDt;
if (numSteps > maxAllowedSteps)
{
numSteps = maxAllowedSteps;
// ensure that we do not simulate a frame ahead when doing delta time; this reduces stutter and latency
// this causes interpolation to 100% use the most recent physics result when true delta time is happening
// and we deliberately simulate up to exactly the timestamp that we want to render
actualDelta = timeAccum / float(numSteps + 1);
// actually: if this results in a per-step delta less than the target physics steptime, clamp it
// this might reintroduce some stutter, but only comes into play in obscure cases
// (because numSteps is originally based on mDefaultPhysicsDt, this won't cause us to overrun)
actualDelta = std::max(actualDelta, mDefaultPhysicsDt);
}
return std::make_tuple(numSteps, actualDelta);
}
void PhysicsTaskScheduler::applyQueuedMovements(float& timeAccum, std::vector<Simulation>& simulations,
osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
assert(mSimulations != &simulations);
waitForWorkers();
// This function run in the main thread.
// While the mSimulationMutex is held, background physics threads can't run.
MaybeExclusiveLock lock(mSimulationMutex, mNumThreads);
double timeStart = mTimer->tick();
// start by finishing previous background computation
if (mNumThreads != 0)
{
syncWithMainThread();
if (mAdvanceSimulation)
mAsyncBudget.update(mTimer->delta_s(mAsyncStartTime, mTimeEnd), mPrevStepCount, mBudgetCursor);
updateStats(frameStart, frameNumber, stats);
}
auto [numSteps, newDelta] = calculateStepConfig(timeAccum);
timeAccum -= numSteps * newDelta;
// init
const Visitors::InitPosition vis{ mCollisionWorld };
for (auto& sim : simulations)
{
std::visit(vis, sim);
}
mPrevStepCount = numSteps;
mRemainingSteps = numSteps;
mTimeAccum = timeAccum;
mPhysicsDt = newDelta;
mSimulations = &simulations;
mAdvanceSimulation = (mRemainingSteps != 0);
++mFrameCounter;
mNumJobs = mSimulations->size();
mNextLOS.store(0, std::memory_order_relaxed);
mNextJob.store(0, std::memory_order_release);
if (mAdvanceSimulation)
mWorldFrameData = std::make_unique<WorldFrameData>();
if (mAdvanceSimulation)
mBudgetCursor += 1;
if (mNumThreads == 0)
{
doSimulation();
syncWithMainThread();
if (mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), numSteps, mBudgetCursor);
return;
}
mAsyncStartTime = mTimer->tick();
mHasJob.notify_all();
if (mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), 1, mBudgetCursor);
}
void PhysicsTaskScheduler::resetSimulation(const ActorMap& actors)
{
waitForWorkers();
MaybeExclusiveLock lock(mSimulationMutex, mNumThreads);
mBudget.reset(mDefaultPhysicsDt);
mAsyncBudget.reset(0.0f);
if (mSimulations != nullptr)
{
mSimulations->clear();
mSimulations = nullptr;
}
for (const auto& [_, actor] : actors)
{
actor->updatePosition();
actor->updateCollisionObjectPosition();
}
}
void PhysicsTaskScheduler::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld,
btCollisionWorld::RayResultCallback& resultCallback) const
{
MaybeLock lock(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->rayTest(rayFromWorld, rayToWorld, resultCallback);
}
void PhysicsTaskScheduler::convexSweepTest(const btConvexShape* castShape, const btTransform& from,
const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const
{
MaybeLock lock(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->convexSweepTest(castShape, from, to, resultCallback);
}
void PhysicsTaskScheduler::contactTest(
btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback)
{
MaybeSharedLock lock(mCollisionWorldMutex, mNumThreads);
ContactTestWrapper::contactTest(mCollisionWorld, colObj, resultCallback);
}
std::optional<btVector3> PhysicsTaskScheduler::getHitPoint(const btTransform& from, btCollisionObject* target)
{
MaybeLock lock(mCollisionWorldMutex, mNumThreads);
// target the collision object's world origin, this should be the center of the collision object
btTransform rayTo;
rayTo.setIdentity();
rayTo.setOrigin(target->getWorldTransform().getOrigin());
btCollisionWorld::ClosestRayResultCallback cb(from.getOrigin(), rayTo.getOrigin());
mCollisionWorld->rayTestSingle(
from, rayTo, target, target->getCollisionShape(), target->getWorldTransform(), cb);
if (!cb.hasHit())
// didn't hit the target. this could happen if point is already inside the collision box
return std::nullopt;
return { cb.m_hitPointWorld };
}
void PhysicsTaskScheduler::aabbTest(
const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
MaybeSharedLock lock(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, callback);
}
void PhysicsTaskScheduler::getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max)
{
MaybeSharedLock lock(mCollisionWorldMutex, mNumThreads);
obj->getCollisionShape()->getAabb(obj->getWorldTransform(), min, max);
}
void PhysicsTaskScheduler::setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask)
{
MaybeExclusiveLock lock(mCollisionWorldMutex, mNumThreads);
collisionObject->getBroadphaseHandle()->m_collisionFilterMask = collisionFilterMask;
}
void PhysicsTaskScheduler::addCollisionObject(
btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
{
mCollisionObjects.insert(collisionObject);
MaybeExclusiveLock lock(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->addCollisionObject(collisionObject, collisionFilterGroup, collisionFilterMask);
}
void PhysicsTaskScheduler::removeCollisionObject(btCollisionObject* collisionObject)
{
mCollisionObjects.erase(collisionObject);
MaybeExclusiveLock lock(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->removeCollisionObject(collisionObject);
}
void PhysicsTaskScheduler::updateSingleAabb(const std::shared_ptr<PtrHolder>& ptr, bool immediate)
{
if (immediate || mNumThreads == 0)
{
updatePtrAabb(ptr);
}
else
{
MaybeExclusiveLock lock(mUpdateAabbMutex, mNumThreads);
mUpdateAabb.insert(ptr);
}
}
bool PhysicsTaskScheduler::getLineOfSight(
const std::shared_ptr<Actor>& actor1, const std::shared_ptr<Actor>& actor2)
{
MaybeExclusiveLock lock(mLOSCacheMutex, mNumThreads);
auto req = LOSRequest(actor1, actor2);
auto result = std::find(mLOSCache.begin(), mLOSCache.end(), req);
if (result == mLOSCache.end())
{
req.mResult = hasLineOfSight(actor1.get(), actor2.get());
mLOSCache.push_back(req);
return req.mResult;
}
result->mAge = 0;
return result->mResult;
}
void PhysicsTaskScheduler::refreshLOSCache()
{
MaybeSharedLock lock(mLOSCacheMutex, mNumThreads);
int job = 0;
int numLOS = mLOSCache.size();
while ((job = mNextLOS.fetch_add(1, std::memory_order_relaxed)) < numLOS)
{
auto& req = mLOSCache[job];
auto actorPtr1 = req.mActors[0].lock();
auto actorPtr2 = req.mActors[1].lock();
if (req.mAge++ > mLOSCacheExpiry || !actorPtr1 || !actorPtr2)
req.mStale = true;
else
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
}
}
void PhysicsTaskScheduler::updateAabbs()
{
MaybeExclusiveLock lock(mUpdateAabbMutex, mNumThreads);
std::for_each(mUpdateAabb.begin(), mUpdateAabb.end(), [this](const std::weak_ptr<PtrHolder>& ptr) {
auto p = ptr.lock();
if (p != nullptr)
updatePtrAabb(p);
});
mUpdateAabb.clear();
}
void PhysicsTaskScheduler::updatePtrAabb(const std::shared_ptr<PtrHolder>& ptr)
{
MaybeExclusiveLock lock(mCollisionWorldMutex, mNumThreads);
if (const auto actor = std::dynamic_pointer_cast<Actor>(ptr))
{
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
else if (const auto object = std::dynamic_pointer_cast<Object>(ptr))
{
object->commitPositionChange();
mCollisionWorld->updateSingleAabb(object->getCollisionObject());
}
else if (const auto projectile = std::dynamic_pointer_cast<Projectile>(ptr))
{
projectile->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(projectile->getCollisionObject());
}
}
void PhysicsTaskScheduler::worker()
{
std::size_t lastFrame = 0;
std::shared_lock lock(mSimulationMutex);
while (!mQuit)
{
if (lastFrame == mFrameCounter)
{
mHasJob.wait(lock, [&] { return mQuit || lastFrame != mFrameCounter; });
lastFrame = mFrameCounter;
}
doSimulation();
}
}
void PhysicsTaskScheduler::updateActorsPositions()
{
const Visitors::UpdatePosition impl{ mCollisionWorld };
const Visitors::WithLockedPtr<Visitors::UpdatePosition, MaybeExclusiveLock> vis{ impl, mCollisionWorldMutex,
mNumThreads };
for (Simulation& sim : *mSimulations)
std::visit(vis, sim);
}
bool PhysicsTaskScheduler::hasLineOfSight(const Actor* actor1, const Actor* actor2)
{
btVector3 pos1 = Misc::Convert::toBullet(
actor1->getCollisionObjectPosition() + osg::Vec3f(0, 0, actor1->getHalfExtents().z() * 0.9)); // eye level
btVector3 pos2 = Misc::Convert::toBullet(
actor2->getCollisionObjectPosition() + osg::Vec3f(0, 0, actor2->getHalfExtents().z() * 0.9));
btCollisionWorld::ClosestRayResultCallback resultCallback(pos1, pos2);
resultCallback.m_collisionFilterGroup = CollisionType_AnyPhysical;
resultCallback.m_collisionFilterMask = CollisionType_World | CollisionType_HeightMap | CollisionType_Door;
MaybeLock lockColWorld(mCollisionWorldMutex, mNumThreads);
mCollisionWorld->rayTest(pos1, pos2, resultCallback);
return !resultCallback.hasHit();
}
void PhysicsTaskScheduler::doSimulation()
{
while (mRemainingSteps)
{
mPreStepBarrier->wait([this] { afterPreStep(); });
int job = 0;
const Visitors::Move impl{ mPhysicsDt, mCollisionWorld, *mWorldFrameData };
const Visitors::WithLockedPtr<Visitors::Move, MaybeLock> vis{ impl, mCollisionWorldMutex, mNumThreads };
while ((job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
std::visit(vis, (*mSimulations)[job]);
mPostStepBarrier->wait([this] { afterPostStep(); });
}
refreshLOSCache();
mPostSimBarrier->wait([this] { afterPostSim(); });
}
void PhysicsTaskScheduler::updateStats(osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
if (!stats.collectStats("engine"))
return;
if (mFrameNumber == frameNumber - 1)
{
stats.setAttribute(mFrameNumber, "physicsworker_time_begin", mTimer->delta_s(mFrameStart, mTimeBegin));
stats.setAttribute(mFrameNumber, "physicsworker_time_taken", mTimer->delta_s(mTimeBegin, mTimeEnd));
stats.setAttribute(mFrameNumber, "physicsworker_time_end", mTimer->delta_s(mFrameStart, mTimeEnd));
}
mFrameStart = frameStart;
mTimeBegin = mTimer->tick();
mFrameNumber = frameNumber;
}
void PhysicsTaskScheduler::debugDraw()
{
MaybeSharedLock lock(mCollisionWorldMutex, mNumThreads);
mDebugDrawer->step();
}
void* PhysicsTaskScheduler::getUserPointer(const btCollisionObject* object) const
{
auto it = mCollisionObjects.find(object);
if (it == mCollisionObjects.end())
return nullptr;
return (*it)->getUserPointer();
}
void PhysicsTaskScheduler::releaseSharedStates()
{
waitForWorkers();
std::scoped_lock lock(mSimulationMutex, mUpdateAabbMutex);
if (mSimulations != nullptr)
{
mSimulations->clear();
mSimulations = nullptr;
}
mUpdateAabb.clear();
}
void PhysicsTaskScheduler::afterPreStep()
{
updateAabbs();
if (!mRemainingSteps)
return;
const Visitors::PreStep impl{ mCollisionWorld };
const Visitors::WithLockedPtr<Visitors::PreStep, MaybeExclusiveLock> vis{ impl, mCollisionWorldMutex,
mNumThreads };
for (auto& sim : *mSimulations)
std::visit(vis, sim);
}
void PhysicsTaskScheduler::afterPostStep()
{
if (mRemainingSteps)
{
--mRemainingSteps;
updateActorsPositions();
}
mNextJob.store(0, std::memory_order_release);
}
void PhysicsTaskScheduler::afterPostSim()
{
{
MaybeExclusiveLock lock(mLOSCacheMutex, mNumThreads);
mLOSCache.erase(
std::remove_if(mLOSCache.begin(), mLOSCache.end(), [](const LOSRequest& req) { return req.mStale; }),
mLOSCache.end());
}
mTimeEnd = mTimer->tick();
std::unique_lock lock(mWorkersDoneMutex);
++mWorkersFrameCounter;
mWorkersDone.notify_all();
}
void PhysicsTaskScheduler::syncWithMainThread()
{
if (mSimulations == nullptr)
return;
const Visitors::Sync vis{ mAdvanceSimulation, mTimeAccum, mPhysicsDt, this };
for (auto& sim : *mSimulations)
std::visit(vis, sim);
mSimulations->clear();
mSimulations = nullptr;
}
// Attempt to acquire unique lock on mSimulationMutex while not all worker
// threads are holding shared lock but will have to may lead to a deadlock because
// C++ standard does not guarantee priority for exclusive and shared locks
// for std::shared_mutex. For example microsoft STL implementation points out
// for the absence of such priority:
// https://docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks
void PhysicsTaskScheduler::waitForWorkers()
{
if (mNumThreads == 0)
return;
std::unique_lock lock(mWorkersDoneMutex);
if (mFrameCounter != mWorkersFrameCounter)
mWorkersDone.wait(lock);
}
}