1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-07 12:54:00 +00:00
OpenMW/files/shaders/lib/light/lighting_util.glsl
2023-02-25 11:03:39 -08:00

138 lines
3.9 KiB
GLSL

#ifndef LIB_LIGHTING_UTIL
#define LIB_LIGHTING_UTIL
#include "lib/util/quickstep.glsl"
#if @lightingMethodUBO
const int mask = int(0xff);
const ivec4 shift = ivec4(int(0), int(8), int(16), int(24));
vec3 unpackRGB(int data)
{
return vec3( (float(((data >> shift.x) & mask)) / 255.0)
,(float(((data >> shift.y) & mask)) / 255.0)
,(float(((data >> shift.z) & mask)) / 255.0));
}
vec4 unpackRGBA(int data)
{
return vec4( (float(((data >> shift.x) & mask)) / 255.0)
,(float(((data >> shift.y) & mask)) / 255.0)
,(float(((data >> shift.z) & mask)) / 255.0)
,(float(((data >> shift.w) & mask)) / 255.0));
}
/* Layout:
packedColors: 8-bit unsigned RGB packed as (diffuse, ambient, specular).
sign bit is stored in unused alpha component
attenuation: constant, linear, quadratic, light radius (as defined in content)
*/
struct LightData
{
ivec4 packedColors;
vec4 position;
vec4 attenuation;
};
uniform int PointLightIndex[@maxLights];
uniform int PointLightCount;
// Defaults to shared layout. If we ever move to GLSL 140, std140 layout should be considered
uniform LightBufferBinding
{
LightData LightBuffer[@maxLightsInScene];
};
#elif @lightingMethodPerObjectUniform
/* Layout:
--------------------------------------- -----------
| pos_x | ambi_r | diff_r | spec_r |
| pos_y | ambi_g | diff_g | spec_g |
| pos_z | ambi_b | diff_b | spec_b |
| att_c | att_l | att_q | radius/spec_a |
--------------------------------------------------
*/
uniform mat4 LightBuffer[@maxLights];
uniform int PointLightCount;
#endif
#if !@lightingMethodFFP
float lcalcRadius(int lightIndex)
{
#if @lightingMethodPerObjectUniform
return @getLight[lightIndex][3].w;
#else
return @getLight[lightIndex].attenuation.w;
#endif
}
#endif
float lcalcIllumination(int lightIndex, float lightDistance)
{
#if @lightingMethodPerObjectUniform
float illumination = clamp(1.0 / (@getLight[lightIndex][0].w + @getLight[lightIndex][1].w * lightDistance + @getLight[lightIndex][2].w * lightDistance * lightDistance), 0.0, 1.0);
return (illumination * (1.0 - quickstep((lightDistance / lcalcRadius(lightIndex)) - 1.0)));
#elif @lightingMethodUBO
float illumination = clamp(1.0 / (@getLight[lightIndex].attenuation.x + @getLight[lightIndex].attenuation.y * lightDistance + @getLight[lightIndex].attenuation.z * lightDistance * lightDistance), 0.0, 1.0);
return (illumination * (1.0 - quickstep((lightDistance / lcalcRadius(lightIndex)) - 1.0)));
#else
return clamp(1.0 / (@getLight[lightIndex].constantAttenuation + @getLight[lightIndex].linearAttenuation * lightDistance + @getLight[lightIndex].quadraticAttenuation * lightDistance * lightDistance), 0.0, 1.0);
#endif
}
vec3 lcalcPosition(int lightIndex)
{
#if @lightingMethodPerObjectUniform
return @getLight[lightIndex][0].xyz;
#else
return @getLight[lightIndex].position.xyz;
#endif
}
vec3 lcalcDiffuse(int lightIndex)
{
#if @lightingMethodPerObjectUniform
return @getLight[lightIndex][2].xyz;
#elif @lightingMethodUBO
return unpackRGB(@getLight[lightIndex].packedColors.x) * float(@getLight[lightIndex].packedColors.w);
#else
return @getLight[lightIndex].diffuse.xyz;
#endif
}
vec3 lcalcAmbient(int lightIndex)
{
#if @lightingMethodPerObjectUniform
return @getLight[lightIndex][1].xyz;
#elif @lightingMethodUBO
return unpackRGB(@getLight[lightIndex].packedColors.y);
#else
return @getLight[lightIndex].ambient.xyz;
#endif
}
vec4 lcalcSpecular(int lightIndex)
{
#if @lightingMethodPerObjectUniform
return @getLight[lightIndex][3];
#elif @lightingMethodUBO
return unpackRGBA(@getLight[lightIndex].packedColors.z);
#else
return @getLight[lightIndex].specular;
#endif
}
void clampLightingResult(inout vec3 lighting)
{
#if @clamp
lighting = clamp(lighting, vec3(0.0), vec3(1.0));
#else
lighting = max(lighting, 0.0);
#endif
}
#endif