1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-01 12:01:51 +00:00
OpenMW/apps/openmw/mwphysics/mtphysics.cpp
fredzio 63d4564455 In 0.46, SetPos was setting position of actors before physics simulation, and from this position movement was simulated. This changed with async physics merging, and at the same time problems started, mostly with abot's scenic travel.
Skipping the simulation, switching off collisions, and other approaches were not correct as they either broke some mods, or some core mechanics of the engine such as teleportation or waterwalking. As it turns out, the way to go is to simply do _nothing_ (modulo some gymnastics to account for the 1 frame difference in case of async).

Scripted movement and the unstucking logic tends to collide. Early out of unstuck in case the actor doesn't attempt to move. This means there is no AI package for NPC, which are the case for some boats and striders, or the player is content with their position.
2023-03-16 22:07:26 +01:00

895 lines
34 KiB
C++

#include "mtphysics.hpp"
#include <cassert>
#include <functional>
#include <mutex>
#include <optional>
#include <shared_mutex>
#include <stdexcept>
#include <variant>
#include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
#include <BulletCollision/CollisionShapes/btCollisionShape.h>
#include <LinearMath/btThreads.h>
#include <osg/Stats>
#include "components/debug/debuglog.hpp"
#include "components/misc/convert.hpp"
#include "components/settings/settings.hpp"
#include <components/misc/barrier.hpp>
#include "../mwmechanics/actorutil.hpp"
#include "../mwmechanics/creaturestats.hpp"
#include "../mwrender/bulletdebugdraw.hpp"
#include "../mwworld/class.hpp"
#include "../mwbase/environment.hpp"
#include "../mwbase/world.hpp"
#include "actor.hpp"
#include "contacttestwrapper.h"
#include "movementsolver.hpp"
#include "object.hpp"
#include "physicssystem.hpp"
#include "projectile.hpp"
namespace MWPhysics
{
namespace
{
template <class Mutex>
std::optional<std::unique_lock<Mutex>> makeExclusiveLock(Mutex& mutex, LockingPolicy lockingPolicy)
{
if (lockingPolicy == LockingPolicy::NoLocks)
return {};
return std::unique_lock(mutex);
}
/// @brief A scoped lock that is either exclusive or inexistent depending on configuration
template <class Mutex>
class MaybeExclusiveLock
{
public:
/// @param mutex a mutex
/// @param threadCount decide wether the excluse lock will be taken
explicit MaybeExclusiveLock(Mutex& mutex, LockingPolicy lockingPolicy)
: mImpl(makeExclusiveLock(mutex, lockingPolicy))
{
}
private:
std::optional<std::unique_lock<Mutex>> mImpl;
};
template <class Mutex>
std::optional<std::shared_lock<Mutex>> makeSharedLock(Mutex& mutex, LockingPolicy lockingPolicy)
{
if (lockingPolicy == LockingPolicy::NoLocks)
return {};
return std::shared_lock(mutex);
}
/// @brief A scoped lock that is either shared or inexistent depending on configuration
template <class Mutex>
class MaybeSharedLock
{
public:
/// @param mutex a shared mutex
/// @param threadCount decide wether the shared lock will be taken
explicit MaybeSharedLock(Mutex& mutex, LockingPolicy lockingPolicy)
: mImpl(makeSharedLock(mutex, lockingPolicy))
{
}
private:
std::optional<std::shared_lock<Mutex>> mImpl;
};
template <class Mutex>
std::variant<std::monostate, std::unique_lock<Mutex>, std::shared_lock<Mutex>> makeLock(
Mutex& mutex, LockingPolicy lockingPolicy)
{
switch (lockingPolicy)
{
case LockingPolicy::NoLocks:
return std::monostate{};
case LockingPolicy::ExclusiveLocksOnly:
return std::unique_lock(mutex);
case LockingPolicy::AllowSharedLocks:
return std::shared_lock(mutex);
};
throw std::runtime_error("Unsupported LockingPolicy: "
+ std::to_string(static_cast<std::underlying_type_t<LockingPolicy>>(lockingPolicy)));
}
/// @brief A scoped lock that is either shared, exclusive or inexistent depending on configuration
template <class Mutex>
class MaybeLock
{
public:
/// @param mutex a shared mutex
/// @param threadCount decide wether the lock will be shared, exclusive or inexistent
explicit MaybeLock(Mutex& mutex, LockingPolicy lockingPolicy)
: mImpl(makeLock(mutex, lockingPolicy))
{
}
private:
std::variant<std::monostate, std::unique_lock<Mutex>, std::shared_lock<Mutex>> mImpl;
};
}
}
namespace
{
bool isUnderWater(const MWPhysics::ActorFrameData& actorData)
{
return actorData.mPosition.z() < actorData.mSwimLevel;
}
osg::Vec3f interpolateMovements(const MWPhysics::PtrHolder& ptr, float timeAccum, float physicsDt)
{
const float interpolationFactor = std::clamp(timeAccum / physicsDt, 0.0f, 1.0f);
return ptr.getPosition() * interpolationFactor + ptr.getPreviousPosition() * (1.f - interpolationFactor);
}
using LockedActorSimulation
= std::pair<std::shared_ptr<MWPhysics::Actor>, std::reference_wrapper<MWPhysics::ActorFrameData>>;
using LockedProjectileSimulation
= std::pair<std::shared_ptr<MWPhysics::Projectile>, std::reference_wrapper<MWPhysics::ProjectileFrameData>>;
namespace Visitors
{
template <class Impl, template <class> class Lock>
struct WithLockedPtr
{
const Impl& mImpl;
std::shared_mutex& mCollisionWorldMutex;
const MWPhysics::LockingPolicy mLockingPolicy;
template <class Ptr, class FrameData>
void operator()(MWPhysics::SimulationImpl<Ptr, FrameData>& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto&& [ptr, frameData] = *std::move(locked);
// Locked shared_ptr has to be destructed after releasing mCollisionWorldMutex to avoid
// possible deadlock. Ptr destructor also acquires mCollisionWorldMutex.
const std::pair arg(std::move(ptr), frameData);
const Lock<std::shared_mutex> lock(mCollisionWorldMutex, mLockingPolicy);
mImpl(arg);
}
};
struct InitPosition
{
const btCollisionWorld* mCollisionWorld;
void operator()(MWPhysics::ActorSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [actor, frameDataRef] = *locked;
auto& frameData = frameDataRef.get();
frameData.mPosition = actor->applyOffsetChange();
if (frameData.mWaterCollision && frameData.mPosition.z() < frameData.mWaterlevel
&& actor->canMoveToWaterSurface(frameData.mWaterlevel, mCollisionWorld))
{
const auto offset = osg::Vec3f(0, 0, frameData.mWaterlevel - frameData.mPosition.z());
MWBase::Environment::get().getWorld()->moveObjectBy(actor->getPtr(), offset, false);
frameData.mPosition = actor->applyOffsetChange();
}
actor->updateCollisionObjectPosition();
frameData.mOldHeight = frameData.mPosition.z();
const auto rotation = actor->getPtr().getRefData().getPosition().asRotationVec3();
frameData.mRotation = osg::Vec2f(rotation.x(), rotation.z());
frameData.mInertia = actor->getInertialForce();
frameData.mStuckFrames = actor->getStuckFrames();
frameData.mLastStuckPosition = actor->getLastStuckPosition();
}
void operator()(MWPhysics::ProjectileSimulation& /*sim*/) const {}
};
struct PreStep
{
btCollisionWorld* mCollisionWorld;
void operator()(const LockedActorSimulation& sim) const
{
MWPhysics::MovementSolver::unstuck(sim.second, mCollisionWorld);
}
void operator()(const LockedProjectileSimulation& /*sim*/) const {}
};
struct UpdatePosition
{
btCollisionWorld* mCollisionWorld;
void operator()(const LockedActorSimulation& sim) const
{
auto& [actor, frameDataRef] = sim;
auto& frameData = frameDataRef.get();
if (actor->setPosition(frameData.mPosition))
{
frameData.mPosition = actor->getPosition(); // account for potential position change made by script
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
}
void operator()(const LockedProjectileSimulation& sim) const
{
auto& [proj, frameDataRef] = sim;
auto& frameData = frameDataRef.get();
proj->setPosition(frameData.mPosition);
proj->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(proj->getCollisionObject());
}
};
struct Move
{
const float mPhysicsDt;
const btCollisionWorld* mCollisionWorld;
const MWPhysics::WorldFrameData& mWorldFrameData;
void operator()(const LockedActorSimulation& sim) const
{
MWPhysics::MovementSolver::move(sim.second, mPhysicsDt, mCollisionWorld, mWorldFrameData);
}
void operator()(const LockedProjectileSimulation& sim) const
{
if (sim.first->isActive())
MWPhysics::MovementSolver::move(sim.second, mPhysicsDt, mCollisionWorld);
}
};
struct Sync
{
const bool mAdvanceSimulation;
const float mTimeAccum;
const float mPhysicsDt;
const MWPhysics::PhysicsTaskScheduler* scheduler;
void operator()(MWPhysics::ActorSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [actor, frameDataRef] = *locked;
auto& frameData = frameDataRef.get();
auto ptr = actor->getPtr();
MWMechanics::CreatureStats& stats = ptr.getClass().getCreatureStats(ptr);
const float heightDiff = frameData.mPosition.z() - frameData.mOldHeight;
const bool isStillOnGround = (mAdvanceSimulation && frameData.mWasOnGround && frameData.mIsOnGround);
if (isStillOnGround || frameData.mFlying || isUnderWater(frameData) || frameData.mSlowFall < 1)
stats.land(ptr == MWMechanics::getPlayer() && (frameData.mFlying || isUnderWater(frameData)));
else if (heightDiff < 0)
stats.addToFallHeight(-heightDiff);
actor->setSimulationPosition(::interpolateMovements(*actor, mTimeAccum, mPhysicsDt));
actor->setLastStuckPosition(frameData.mLastStuckPosition);
actor->setStuckFrames(frameData.mStuckFrames);
if (mAdvanceSimulation)
{
MWWorld::Ptr standingOn;
auto* ptrHolder
= static_cast<MWPhysics::PtrHolder*>(scheduler->getUserPointer(frameData.mStandingOn));
if (ptrHolder)
standingOn = ptrHolder->getPtr();
actor->setStandingOnPtr(standingOn);
// the "on ground" state of an actor might have been updated by a traceDown, don't overwrite the
// change
if (actor->getOnGround() == frameData.mWasOnGround)
actor->setOnGround(frameData.mIsOnGround);
actor->setOnSlope(frameData.mIsOnSlope);
actor->setWalkingOnWater(frameData.mWalkingOnWater);
actor->setInertialForce(frameData.mInertia);
}
}
void operator()(MWPhysics::ProjectileSimulation& sim) const
{
auto locked = sim.lock();
if (!locked.has_value())
return;
auto& [proj, frameData] = *locked;
proj->setSimulationPosition(::interpolateMovements(*proj, mTimeAccum, mPhysicsDt));
}
};
}
}
namespace MWPhysics
{
namespace
{
unsigned getMaxBulletSupportedThreads()
{
auto broad = std::make_unique<btDbvtBroadphase>();
assert(BT_MAX_THREAD_COUNT > 0);
return std::min<unsigned>(broad->m_rayTestStacks.size(), BT_MAX_THREAD_COUNT - 1);
}
LockingPolicy detectLockingPolicy()
{
if (Settings::Manager::getInt("async num threads", "Physics") < 1)
return LockingPolicy::NoLocks;
if (getMaxBulletSupportedThreads() > 1)
return LockingPolicy::AllowSharedLocks;
Log(Debug::Warning) << "Bullet was not compiled with multithreading support, 1 async thread will be used";
return LockingPolicy::ExclusiveLocksOnly;
}
unsigned getNumThreads(LockingPolicy lockingPolicy)
{
switch (lockingPolicy)
{
case LockingPolicy::NoLocks:
return 0;
case LockingPolicy::ExclusiveLocksOnly:
return 1;
case LockingPolicy::AllowSharedLocks:
return std::clamp<unsigned>(
Settings::Manager::getInt("async num threads", "Physics"), 0, getMaxBulletSupportedThreads());
}
throw std::runtime_error("Unsupported LockingPolicy: "
+ std::to_string(static_cast<std::underlying_type_t<LockingPolicy>>(lockingPolicy)));
}
}
class PhysicsTaskScheduler::WorkersSync
{
public:
void waitForWorkers()
{
std::unique_lock lock(mWorkersDoneMutex);
if (mFrameCounter != mWorkersFrameCounter)
mWorkersDone.wait(lock);
}
void wakeUpWorkers()
{
const std::lock_guard lock(mHasJobMutex);
++mFrameCounter;
mHasJob.notify_all();
}
void stopWorkers()
{
const std::lock_guard lock(mHasJobMutex);
mShouldStop = true;
mHasJob.notify_all();
}
void workIsDone()
{
const std::lock_guard lock(mWorkersDoneMutex);
++mWorkersFrameCounter;
mWorkersDone.notify_all();
}
template <class F>
void runWorker(F&& f) noexcept
{
std::size_t lastFrame = 0;
std::unique_lock lock(mHasJobMutex);
while (!mShouldStop)
{
mHasJob.wait(lock, [&] { return mShouldStop || mFrameCounter != lastFrame; });
lastFrame = mFrameCounter;
lock.unlock();
f();
lock.lock();
}
}
private:
std::size_t mWorkersFrameCounter = 0;
std::condition_variable mWorkersDone;
std::mutex mWorkersDoneMutex;
std::condition_variable mHasJob;
bool mShouldStop = false;
std::size_t mFrameCounter = 0;
std::mutex mHasJobMutex;
};
PhysicsTaskScheduler::PhysicsTaskScheduler(
float physicsDt, btCollisionWorld* collisionWorld, MWRender::DebugDrawer* debugDrawer)
: mDefaultPhysicsDt(physicsDt)
, mPhysicsDt(physicsDt)
, mTimeAccum(0.f)
, mCollisionWorld(collisionWorld)
, mDebugDrawer(debugDrawer)
, mLockingPolicy(detectLockingPolicy())
, mNumThreads(getNumThreads(mLockingPolicy))
, mNumJobs(0)
, mRemainingSteps(0)
, mLOSCacheExpiry(Settings::Manager::getInt("lineofsight keep inactive cache", "Physics"))
, mAdvanceSimulation(false)
, mNextJob(0)
, mNextLOS(0)
, mFrameNumber(0)
, mTimer(osg::Timer::instance())
, mPrevStepCount(1)
, mBudget(physicsDt)
, mAsyncBudget(0.0f)
, mBudgetCursor(0)
, mAsyncStartTime(0)
, mTimeBegin(0)
, mTimeEnd(0)
, mFrameStart(0)
, mWorkersSync(mNumThreads >= 1 ? std::make_unique<WorkersSync>() : nullptr)
{
if (mNumThreads >= 1)
{
Log(Debug::Info) << "Using " << mNumThreads << " async physics threads";
for (unsigned i = 0; i < mNumThreads; ++i)
mThreads.emplace_back([&] { worker(); });
}
else
{
mLOSCacheExpiry = 0;
}
mPreStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostStepBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
mPostSimBarrier = std::make_unique<Misc::Barrier>(mNumThreads);
}
PhysicsTaskScheduler::~PhysicsTaskScheduler()
{
waitForWorkers();
{
MaybeExclusiveLock lock(mSimulationMutex, mLockingPolicy);
mNumJobs = 0;
mRemainingSteps = 0;
}
if (mWorkersSync != nullptr)
mWorkersSync->stopWorkers();
for (auto& thread : mThreads)
thread.join();
}
std::tuple<int, float> PhysicsTaskScheduler::calculateStepConfig(float timeAccum) const
{
int maxAllowedSteps = 2;
int numSteps = timeAccum / mDefaultPhysicsDt;
// adjust maximum step count based on whether we're likely physics bottlenecked or not
// if maxAllowedSteps ends up higher than numSteps, we will not invoke delta time
// if it ends up lower than numSteps, but greater than 1, we will run a number of true delta time physics steps
// that we expect to be within budget if it ends up lower than numSteps and also 1, we will run a single delta
// time physics step if we did not do this, and had a fixed step count limit, we would have an unnecessarily low
// render framerate if we were only physics bottlenecked, and we would be unnecessarily invoking true delta time
// if we were only render bottlenecked
// get physics timing stats
float budgetMeasurement = std::max(mBudget.get(), mAsyncBudget.get());
// time spent per step in terms of the intended physics framerate
budgetMeasurement /= mDefaultPhysicsDt;
// ensure sane minimum value
budgetMeasurement = std::max(0.00001f, budgetMeasurement);
// we're spending almost or more than realtime per physics frame; limit to a single step
if (budgetMeasurement > 0.95)
maxAllowedSteps = 1;
// physics is fairly cheap; limit based on expense
if (budgetMeasurement < 0.5)
maxAllowedSteps = std::ceil(1.0 / budgetMeasurement);
// limit to a reasonable amount
maxAllowedSteps = std::min(10, maxAllowedSteps);
// fall back to delta time for this frame if fixed timestep physics would fall behind
float actualDelta = mDefaultPhysicsDt;
if (numSteps > maxAllowedSteps)
{
numSteps = maxAllowedSteps;
// ensure that we do not simulate a frame ahead when doing delta time; this reduces stutter and latency
// this causes interpolation to 100% use the most recent physics result when true delta time is happening
// and we deliberately simulate up to exactly the timestamp that we want to render
actualDelta = timeAccum / float(numSteps + 1);
// actually: if this results in a per-step delta less than the target physics steptime, clamp it
// this might reintroduce some stutter, but only comes into play in obscure cases
// (because numSteps is originally based on mDefaultPhysicsDt, this won't cause us to overrun)
actualDelta = std::max(actualDelta, mDefaultPhysicsDt);
}
return std::make_tuple(numSteps, actualDelta);
}
void PhysicsTaskScheduler::applyQueuedMovements(float& timeAccum, std::vector<Simulation>& simulations,
osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
assert(mSimulations != &simulations);
waitForWorkers();
prepareWork(timeAccum, simulations, frameStart, frameNumber, stats);
if (mWorkersSync != nullptr)
mWorkersSync->wakeUpWorkers();
}
void PhysicsTaskScheduler::prepareWork(float& timeAccum, std::vector<Simulation>& simulations,
osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
// This function run in the main thread.
// While the mSimulationMutex is held, background physics threads can't run.
MaybeExclusiveLock lock(mSimulationMutex, mLockingPolicy);
double timeStart = mTimer->tick();
// start by finishing previous background computation
if (mNumThreads != 0)
{
syncWithMainThread();
if (mAdvanceSimulation)
mAsyncBudget.update(mTimer->delta_s(mAsyncStartTime, mTimeEnd), mPrevStepCount, mBudgetCursor);
updateStats(frameStart, frameNumber, stats);
}
auto [numSteps, newDelta] = calculateStepConfig(timeAccum);
timeAccum -= numSteps * newDelta;
// init
const Visitors::InitPosition vis{ mCollisionWorld };
for (auto& sim : simulations)
{
std::visit(vis, sim);
}
mPrevStepCount = numSteps;
mRemainingSteps = numSteps;
mTimeAccum = timeAccum;
mPhysicsDt = newDelta;
mSimulations = &simulations;
mAdvanceSimulation = (mRemainingSteps != 0);
mNumJobs = mSimulations->size();
mNextLOS.store(0, std::memory_order_relaxed);
mNextJob.store(0, std::memory_order_release);
if (mAdvanceSimulation)
mWorldFrameData = std::make_unique<WorldFrameData>();
if (mAdvanceSimulation)
mBudgetCursor += 1;
if (mNumThreads == 0)
{
doSimulation();
syncWithMainThread();
if (mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), numSteps, mBudgetCursor);
return;
}
mAsyncStartTime = mTimer->tick();
if (mAdvanceSimulation)
mBudget.update(mTimer->delta_s(timeStart, mTimer->tick()), 1, mBudgetCursor);
}
void PhysicsTaskScheduler::resetSimulation(const ActorMap& actors)
{
waitForWorkers();
MaybeExclusiveLock lock(mSimulationMutex, mLockingPolicy);
mBudget.reset(mDefaultPhysicsDt);
mAsyncBudget.reset(0.0f);
if (mSimulations != nullptr)
{
mSimulations->clear();
mSimulations = nullptr;
}
for (const auto& [_, actor] : actors)
{
actor->updatePosition();
actor->updateCollisionObjectPosition();
}
}
void PhysicsTaskScheduler::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld,
btCollisionWorld::RayResultCallback& resultCallback) const
{
MaybeLock lock(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->rayTest(rayFromWorld, rayToWorld, resultCallback);
}
void PhysicsTaskScheduler::convexSweepTest(const btConvexShape* castShape, const btTransform& from,
const btTransform& to, btCollisionWorld::ConvexResultCallback& resultCallback) const
{
MaybeLock lock(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->convexSweepTest(castShape, from, to, resultCallback);
}
void PhysicsTaskScheduler::contactTest(
btCollisionObject* colObj, btCollisionWorld::ContactResultCallback& resultCallback)
{
MaybeSharedLock lock(mCollisionWorldMutex, mLockingPolicy);
ContactTestWrapper::contactTest(mCollisionWorld, colObj, resultCallback);
}
std::optional<btVector3> PhysicsTaskScheduler::getHitPoint(const btTransform& from, btCollisionObject* target)
{
MaybeLock lock(mCollisionWorldMutex, mLockingPolicy);
// target the collision object's world origin, this should be the center of the collision object
btTransform rayTo;
rayTo.setIdentity();
rayTo.setOrigin(target->getWorldTransform().getOrigin());
btCollisionWorld::ClosestRayResultCallback cb(from.getOrigin(), rayTo.getOrigin());
mCollisionWorld->rayTestSingle(
from, rayTo, target, target->getCollisionShape(), target->getWorldTransform(), cb);
if (!cb.hasHit())
// didn't hit the target. this could happen if point is already inside the collision box
return std::nullopt;
return { cb.m_hitPointWorld };
}
void PhysicsTaskScheduler::aabbTest(
const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
MaybeSharedLock lock(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, callback);
}
void PhysicsTaskScheduler::getAabb(const btCollisionObject* obj, btVector3& min, btVector3& max)
{
MaybeSharedLock lock(mCollisionWorldMutex, mLockingPolicy);
obj->getCollisionShape()->getAabb(obj->getWorldTransform(), min, max);
}
void PhysicsTaskScheduler::setCollisionFilterMask(btCollisionObject* collisionObject, int collisionFilterMask)
{
MaybeExclusiveLock lock(mCollisionWorldMutex, mLockingPolicy);
collisionObject->getBroadphaseHandle()->m_collisionFilterMask = collisionFilterMask;
}
void PhysicsTaskScheduler::addCollisionObject(
btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
{
mCollisionObjects.insert(collisionObject);
MaybeExclusiveLock lock(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->addCollisionObject(collisionObject, collisionFilterGroup, collisionFilterMask);
}
void PhysicsTaskScheduler::removeCollisionObject(btCollisionObject* collisionObject)
{
mCollisionObjects.erase(collisionObject);
MaybeExclusiveLock lock(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->removeCollisionObject(collisionObject);
}
void PhysicsTaskScheduler::updateSingleAabb(const std::shared_ptr<PtrHolder>& ptr, bool immediate)
{
if (immediate || mNumThreads == 0)
{
updatePtrAabb(ptr);
}
else
{
MaybeExclusiveLock lock(mUpdateAabbMutex, mLockingPolicy);
mUpdateAabb.insert(ptr);
}
}
bool PhysicsTaskScheduler::getLineOfSight(
const std::shared_ptr<Actor>& actor1, const std::shared_ptr<Actor>& actor2)
{
MaybeExclusiveLock lock(mLOSCacheMutex, mLockingPolicy);
auto req = LOSRequest(actor1, actor2);
auto result = std::find(mLOSCache.begin(), mLOSCache.end(), req);
if (result == mLOSCache.end())
{
req.mResult = hasLineOfSight(actor1.get(), actor2.get());
mLOSCache.push_back(req);
return req.mResult;
}
result->mAge = 0;
return result->mResult;
}
void PhysicsTaskScheduler::refreshLOSCache()
{
MaybeSharedLock lock(mLOSCacheMutex, mLockingPolicy);
int job = 0;
int numLOS = mLOSCache.size();
while ((job = mNextLOS.fetch_add(1, std::memory_order_relaxed)) < numLOS)
{
auto& req = mLOSCache[job];
auto actorPtr1 = req.mActors[0].lock();
auto actorPtr2 = req.mActors[1].lock();
if (req.mAge++ > mLOSCacheExpiry || !actorPtr1 || !actorPtr2)
req.mStale = true;
else
req.mResult = hasLineOfSight(actorPtr1.get(), actorPtr2.get());
}
}
void PhysicsTaskScheduler::updateAabbs()
{
MaybeExclusiveLock lock(mUpdateAabbMutex, mLockingPolicy);
std::for_each(mUpdateAabb.begin(), mUpdateAabb.end(), [this](const std::weak_ptr<PtrHolder>& ptr) {
auto p = ptr.lock();
if (p != nullptr)
updatePtrAabb(p);
});
mUpdateAabb.clear();
}
void PhysicsTaskScheduler::updatePtrAabb(const std::shared_ptr<PtrHolder>& ptr)
{
MaybeExclusiveLock lock(mCollisionWorldMutex, mLockingPolicy);
if (const auto actor = std::dynamic_pointer_cast<Actor>(ptr))
{
actor->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(actor->getCollisionObject());
}
else if (const auto object = std::dynamic_pointer_cast<Object>(ptr))
{
object->commitPositionChange();
mCollisionWorld->updateSingleAabb(object->getCollisionObject());
}
else if (const auto projectile = std::dynamic_pointer_cast<Projectile>(ptr))
{
projectile->updateCollisionObjectPosition();
mCollisionWorld->updateSingleAabb(projectile->getCollisionObject());
}
}
void PhysicsTaskScheduler::worker()
{
mWorkersSync->runWorker([this] {
std::shared_lock lock(mSimulationMutex);
doSimulation();
});
}
void PhysicsTaskScheduler::updateActorsPositions()
{
const Visitors::UpdatePosition impl{ mCollisionWorld };
const Visitors::WithLockedPtr<Visitors::UpdatePosition, MaybeExclusiveLock> vis{ impl, mCollisionWorldMutex,
mLockingPolicy };
for (Simulation& sim : *mSimulations)
std::visit(vis, sim);
}
bool PhysicsTaskScheduler::hasLineOfSight(const Actor* actor1, const Actor* actor2)
{
btVector3 pos1 = Misc::Convert::toBullet(
actor1->getCollisionObjectPosition() + osg::Vec3f(0, 0, actor1->getHalfExtents().z() * 0.9)); // eye level
btVector3 pos2 = Misc::Convert::toBullet(
actor2->getCollisionObjectPosition() + osg::Vec3f(0, 0, actor2->getHalfExtents().z() * 0.9));
btCollisionWorld::ClosestRayResultCallback resultCallback(pos1, pos2);
resultCallback.m_collisionFilterGroup = CollisionType_AnyPhysical;
resultCallback.m_collisionFilterMask = CollisionType_World | CollisionType_HeightMap | CollisionType_Door;
MaybeLock lockColWorld(mCollisionWorldMutex, mLockingPolicy);
mCollisionWorld->rayTest(pos1, pos2, resultCallback);
return !resultCallback.hasHit();
}
void PhysicsTaskScheduler::doSimulation()
{
while (mRemainingSteps)
{
mPreStepBarrier->wait([this] { afterPreStep(); });
int job = 0;
const Visitors::Move impl{ mPhysicsDt, mCollisionWorld, *mWorldFrameData };
const Visitors::WithLockedPtr<Visitors::Move, MaybeLock> vis{ impl, mCollisionWorldMutex, mLockingPolicy };
while ((job = mNextJob.fetch_add(1, std::memory_order_relaxed)) < mNumJobs)
std::visit(vis, (*mSimulations)[job]);
mPostStepBarrier->wait([this] { afterPostStep(); });
}
refreshLOSCache();
mPostSimBarrier->wait([this] { afterPostSim(); });
}
void PhysicsTaskScheduler::updateStats(osg::Timer_t frameStart, unsigned int frameNumber, osg::Stats& stats)
{
if (!stats.collectStats("engine"))
return;
if (mFrameNumber == frameNumber - 1)
{
stats.setAttribute(mFrameNumber, "physicsworker_time_begin", mTimer->delta_s(mFrameStart, mTimeBegin));
stats.setAttribute(mFrameNumber, "physicsworker_time_taken", mTimer->delta_s(mTimeBegin, mTimeEnd));
stats.setAttribute(mFrameNumber, "physicsworker_time_end", mTimer->delta_s(mFrameStart, mTimeEnd));
}
mFrameStart = frameStart;
mTimeBegin = mTimer->tick();
mFrameNumber = frameNumber;
}
void PhysicsTaskScheduler::debugDraw()
{
MaybeSharedLock lock(mCollisionWorldMutex, mLockingPolicy);
mDebugDrawer->step();
}
void* PhysicsTaskScheduler::getUserPointer(const btCollisionObject* object) const
{
auto it = mCollisionObjects.find(object);
if (it == mCollisionObjects.end())
return nullptr;
return (*it)->getUserPointer();
}
void PhysicsTaskScheduler::releaseSharedStates()
{
waitForWorkers();
std::scoped_lock lock(mSimulationMutex, mUpdateAabbMutex);
if (mSimulations != nullptr)
{
mSimulations->clear();
mSimulations = nullptr;
}
mUpdateAabb.clear();
}
void PhysicsTaskScheduler::afterPreStep()
{
updateAabbs();
if (!mRemainingSteps)
return;
const Visitors::PreStep impl{ mCollisionWorld };
const Visitors::WithLockedPtr<Visitors::PreStep, MaybeExclusiveLock> vis{ impl, mCollisionWorldMutex,
mLockingPolicy };
for (auto& sim : *mSimulations)
std::visit(vis, sim);
}
void PhysicsTaskScheduler::afterPostStep()
{
if (mRemainingSteps)
{
--mRemainingSteps;
updateActorsPositions();
}
mNextJob.store(0, std::memory_order_release);
}
void PhysicsTaskScheduler::afterPostSim()
{
{
MaybeExclusiveLock lock(mLOSCacheMutex, mLockingPolicy);
mLOSCache.erase(
std::remove_if(mLOSCache.begin(), mLOSCache.end(), [](const LOSRequest& req) { return req.mStale; }),
mLOSCache.end());
}
mTimeEnd = mTimer->tick();
if (mWorkersSync != nullptr)
mWorkersSync->workIsDone();
}
void PhysicsTaskScheduler::syncWithMainThread()
{
if (mSimulations == nullptr)
return;
const Visitors::Sync vis{ mAdvanceSimulation, mTimeAccum, mPhysicsDt, this };
for (auto& sim : *mSimulations)
std::visit(vis, sim);
mSimulations->clear();
mSimulations = nullptr;
}
// Attempt to acquire unique lock on mSimulationMutex while not all worker
// threads are holding shared lock but will have to may lead to a deadlock because
// C++ standard does not guarantee priority for exclusive and shared locks
// for std::shared_mutex. For example microsoft STL implementation points out
// for the absence of such priority:
// https://docs.microsoft.com/en-us/windows/win32/sync/slim-reader-writer--srw--locks
void PhysicsTaskScheduler::waitForWorkers()
{
if (mWorkersSync != nullptr)
mWorkersSync->waitForWorkers();
}
}