1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-26 18:35:20 +00:00
OpenMW/apps/openmw/mwrender/terrain.cpp

584 lines
24 KiB
C++

#include <OgreTerrain.h>
#include <OgreTerrainGroup.h>
#include <OgreTerrainMaterialGeneratorA.h>
#include <boost/lexical_cast.hpp>
#include "terrain.hpp"
#include "components/esm/loadland.hpp"
namespace MWRender
{
//----------------------------------------------------------------------------------------------
TerrainManager::TerrainManager(Ogre::SceneManager* mgr)
{
mTerrainGlobals = OGRE_NEW Ogre::TerrainGlobalOptions();
mTerrainGlobals->setMaxPixelError(8);
mTerrainGlobals->setLayerBlendMapSize(SPLIT_TERRAIN ? 256 : 1024);
mTerrainGlobals->setLightMapSize(SPLIT_TERRAIN ? 256 : 1024);
mTerrainGlobals->setCompositeMapSize(SPLIT_TERRAIN ? 256 : 1024);
mTerrainGlobals->setDefaultGlobalColourMapSize(256);
//10 (default) didn't seem to be quite enough
mTerrainGlobals->setSkirtSize(128);
/*
* Here we are pushing the composite map distance beyond the edge
* of the rendered terrain due to not having setup lighting
*/
mTerrainGlobals->setCompositeMapDistance(ESM::Land::REAL_SIZE*4);
Ogre::TerrainMaterialGenerator::Profile* const activeProfile =
mTerrainGlobals->getDefaultMaterialGenerator()
->getActiveProfile();
Ogre::TerrainMaterialGeneratorA::SM2Profile* matProfile =
static_cast<Ogre::TerrainMaterialGeneratorA::SM2Profile*>(activeProfile);
matProfile->setLightmapEnabled(false);
matProfile->setLayerSpecularMappingEnabled(false);
matProfile->setLayerParallaxMappingEnabled(false);
matProfile->setReceiveDynamicShadowsEnabled(false);
//scale the land size if required
mLandSize = ESM::Land::LAND_SIZE;
mRealSize = ESM::Land::REAL_SIZE;
if ( SPLIT_TERRAIN )
{
mLandSize = (mLandSize - 1)/2 + 1;
mRealSize /= 2;
}
mTerrainGroup = OGRE_NEW Ogre::TerrainGroup(mgr,
Ogre::Terrain::ALIGN_X_Z,
mLandSize,
mRealSize);
mTerrainGroup->setOrigin(Ogre::Vector3(mRealSize/2,
0,
-mRealSize/2));
Ogre::Terrain::ImportData& importSettings =
mTerrainGroup->getDefaultImportSettings();
importSettings.inputBias = 0;
importSettings.terrainSize = mLandSize;
importSettings.worldSize = mRealSize;
importSettings.minBatchSize = 9;
importSettings.maxBatchSize = mLandSize;
importSettings.deleteInputData = true;
}
//----------------------------------------------------------------------------------------------
TerrainManager::~TerrainManager()
{
OGRE_DELETE mTerrainGroup;
OGRE_DELETE mTerrainGlobals;
}
//----------------------------------------------------------------------------------------------
void TerrainManager::cellAdded(MWWorld::Ptr::CellStore *store)
{
const int cellX = store->cell->getGridX();
const int cellY = store->cell->getGridY();
if ( SPLIT_TERRAIN )
{
//split the cell terrain into four segments
const int numTextures = ESM::Land::LAND_TEXTURE_SIZE/2;
for ( int x = 0; x < 2; x++ )
{
for ( int y = 0; y < 2; y++ )
{
Ogre::Terrain::ImportData terrainData =
mTerrainGroup->getDefaultImportSettings();
const int terrainX = cellX * 2 + x;
const int terrainY = cellY * 2 + y;
//it makes far more sense to reallocate the memory here,
//and let Ogre deal with it due to the issues with deleting
//it at the wrong time if using threads (Which Ogre::Terrain does)
terrainData.inputFloat = OGRE_ALLOC_T(float,
mLandSize*mLandSize,
Ogre::MEMCATEGORY_GEOMETRY);
//copy the height data row by row
for ( int terrainCopyY = 0; terrainCopyY < mLandSize; terrainCopyY++ )
{
//the offset of the current segment
const size_t yOffset = y * (mLandSize-1) * ESM::Land::LAND_SIZE +
//offset of the row
terrainCopyY * ESM::Land::LAND_SIZE;
const size_t xOffset = x * (mLandSize-1);
memcpy(&terrainData.inputFloat[terrainCopyY*mLandSize],
&store->land[1][1]->landData->heights[yOffset + xOffset],
mLandSize*sizeof(float));
}
//this should really be 33*33
Ogre::uchar* vertexColourAlpha = OGRE_ALLOC_T(Ogre::uchar,
mLandSize*mLandSize,
Ogre::MEMCATEGORY_GENERAL);
std::map<uint16_t, int> indexes;
initTerrainTextures(&terrainData, store,
x * numTextures, y * numTextures,
numTextures, vertexColourAlpha,
indexes);
assert( mTerrainGroup->getTerrain(cellX, cellY) == NULL &&
"The terrain for this cell already existed" );
mTerrainGroup->defineTerrain(terrainX, terrainY, &terrainData);
mTerrainGroup->loadTerrain(terrainX, terrainY, true);
Ogre::Terrain* terrain = mTerrainGroup->getTerrain(terrainX, terrainY);
Ogre::Image vertexColourBlendMap = Ogre::Image();
vertexColourBlendMap.loadDynamicImage(vertexColourAlpha,
mLandSize, mLandSize, 1,
Ogre::PF_A8, true)
.resize(mTerrainGlobals->getLayerBlendMapSize(),
mTerrainGlobals->getLayerBlendMapSize(),
Ogre::Image::FILTER_BOX);
initTerrainBlendMaps(terrain, store,
x * numTextures, y * numTextures,
numTextures,
vertexColourBlendMap.getData(),
indexes);
}
}
}
else
{
Ogre::Terrain::ImportData terrainData =
mTerrainGroup->getDefaultImportSettings();
//one cell is one terrain segment
terrainData.inputFloat = OGRE_ALLOC_T(float,
mLandSize*mLandSize,
Ogre::MEMCATEGORY_GEOMETRY);
memcpy(&terrainData.inputFloat[0],
&store->land[1][1]->landData->heights[0],
mLandSize*mLandSize*sizeof(float));
Ogre::uchar* vertexColourAlpha = OGRE_ALLOC_T(Ogre::uchar,
mLandSize*mLandSize,
Ogre::MEMCATEGORY_GENERAL);
std::map<uint16_t, int> indexes;
initTerrainTextures(&terrainData, store, 0, 0,
ESM::Land::LAND_TEXTURE_SIZE, vertexColourAlpha, indexes);
mTerrainGroup->defineTerrain(cellX, cellY, &terrainData);
mTerrainGroup->loadTerrain(cellX, cellY, true);
Ogre::Terrain* terrain = mTerrainGroup->getTerrain(cellX, cellY);
Ogre::Image vertexColourBlendMap = Ogre::Image();
vertexColourBlendMap.loadDynamicImage(vertexColourAlpha,
mLandSize, mLandSize, 1,
Ogre::PF_A8, true)
.resize(mTerrainGlobals->getLayerBlendMapSize(),
mTerrainGlobals->getLayerBlendMapSize(),
Ogre::Image::FILTER_BOX);
initTerrainBlendMaps(terrain, store, 0, 0,
ESM::Land::LAND_TEXTURE_SIZE,
vertexColourBlendMap.getData(), indexes);
}
mTerrainGroup->freeTemporaryResources();
}
//----------------------------------------------------------------------------------------------
void TerrainManager::cellRemoved(MWWorld::Ptr::CellStore *store)
{
if ( SPLIT_TERRAIN )
{
for ( int x = 0; x < 2; x++ )
{
for ( int y = 0; y < 2; y++ )
{
mTerrainGroup->unloadTerrain(store->cell->getGridX() * 2 + x,
store->cell->getGridY() * 2 + y);
}
}
}
else
{
mTerrainGroup->unloadTerrain(store->cell->getGridX(),
store->cell->getGridY());
}
}
//----------------------------------------------------------------------------------------------
void TerrainManager::initTerrainTextures(Ogre::Terrain::ImportData* terrainData,
MWWorld::Ptr::CellStore* store,
int fromX, int fromY, int size,
Ogre::uchar* vertexColourAlpha,
std::map<uint16_t, int>& indexes)
{
assert(store != NULL && "store must be a valid pointer");
assert(terrainData != NULL && "Must have valid terrain data");
assert(fromX >= 0 && fromY >= 0 &&
"Can't get a terrain texture on terrain outside the current cell");
assert(fromX+size <= ESM::Land::LAND_TEXTURE_SIZE &&
fromY+size <= ESM::Land::LAND_TEXTURE_SIZE &&
"Can't get a terrain texture on terrain outside the current cell");
//there is one texture that we want to use as a base (i.e. it won't have
//a blend map). This holds the ltex index of that base texture so that
//we know not to include it in the output map
int baseTexture = -1;
for ( int y = fromY - 1; y < fromY + size + 1; y++ )
{
for ( int x = fromX - 1; x < fromX + size + 1; x++ )
{
const uint16_t ltexIndex = getLtexIndexAt(store, x, y);
//this is the base texture, so we can ignore this at present
if ( ltexIndex == baseTexture )
{
continue;
}
const std::map<uint16_t, int>::const_iterator it = indexes.find(ltexIndex);
if ( it == indexes.end() )
{
//NB: All vtex ids are +1 compared to the ltex ids
assert( (int)store->landTextures->ltex.size() >= (int)ltexIndex - 1 &&
"LAND.VTEX must be within the bounds of the LTEX array");
std::string texture;
if ( ltexIndex == 0 )
{
texture = "_land_default.dds";
}
else
{
texture = store->landTextures->ltex[ltexIndex-1].texture;
//TODO this is needed due to MWs messed up texture handling
texture = texture.substr(0, texture.rfind(".")) + ".dds";
}
const size_t position = terrainData->layerList.size();
terrainData->layerList.push_back(Ogre::Terrain::LayerInstance());
Ogre::TexturePtr normDisp = getNormalDisp("textures\\" + texture);
terrainData->layerList[position].worldSize = 256;
terrainData->layerList[position].textureNames.push_back("textures\\" + texture);
terrainData->layerList[position].textureNames.push_back(normDisp->getName());
if ( baseTexture == -1 )
{
baseTexture = ltexIndex;
}
else
{
indexes[ltexIndex] = position;
}
}
}
}
//add the vertex colour overlay
if ( store->land[1][1]->landData->usingColours )
{
//TODO sort the *4 bit
Ogre::TexturePtr vclr = getVertexColours(store, vertexColourAlpha, fromX*4, fromY*4, mLandSize);
Ogre::TexturePtr normDisp = getNormalDisp("DOES_NOT_EXIST");
const size_t position = terrainData->layerList.size();
terrainData->layerList.push_back(Ogre::Terrain::LayerInstance());
terrainData->layerList[position].worldSize = mRealSize;
terrainData->layerList[position].textureNames.push_back(vclr->getName());
terrainData->layerList[position].textureNames.push_back(normDisp->getName());
}
}
//----------------------------------------------------------------------------------------------
void TerrainManager::initTerrainBlendMaps(Ogre::Terrain* terrain,
MWWorld::Ptr::CellStore* store,
int fromX, int fromY, int size,
Ogre::uchar* vertexColourAlpha,
const std::map<uint16_t, int>& indexes)
{
assert(store != NULL && "store must be a valid pointer");
assert(terrain != NULL && "Must have valid terrain");
assert(fromX >= 0 && fromY >= 0 &&
"Can't get a terrain texture on terrain outside the current cell");
assert(fromX+size <= ESM::Land::LAND_TEXTURE_SIZE &&
fromY+size <= ESM::Land::LAND_TEXTURE_SIZE &&
"Can't get a terrain texture on terrain outside the current cell");
//size must be a power of 2 as we do divisions with a power of 2 number
//that need to result in an integer for correct splatting
assert( (size & (size - 1)) == 0 && "Size must be a power of 2");
const int blendSize = terrain->getLayerBlendMapSize();
const int blendDist = TERRAIN_SHADE_DISTANCE * (blendSize / size);
//zero out every map
std::map<uint16_t, int>::const_iterator iter;
for ( iter = indexes.begin(); iter != indexes.end(); ++iter )
{
float* pBlend = terrain->getLayerBlendMap(iter->second)
->getBlendPointer();
memset(pBlend, 0, sizeof(float) * blendSize * blendSize);
}
//except the overlay, which we will just splat over the top
if ( store->land[1][1]->landData->usingColours )
{
//the overlay is always the last texture layer
float* pBlend = terrain->getLayerBlendMap(terrain->getLayerCount() - 1)
->getBlendPointer();
for ( int i = 0; i < blendSize * blendSize; i++ ){
*pBlend++ = (*vertexColourAlpha++)/255.0f;
}
}
//covert the ltex data into a set of blend maps
for ( int texY = fromY - 1; texY < fromY + size + 1; texY++ )
{
for ( int texX = fromX - 1; texX < fromX + size + 1; texX++ )
{
const uint16_t ltexIndex = getLtexIndexAt(store, texX, texY);
//whilte texX is the splat index relative to the entire cell,
//relX is relative to the current segment we are splatting
const int relX = texX - fromX;
const int relY = texY - fromY;
//check if it is the base texture (which isn't in the map) and
//if it is don't bother altering the blend map for it
if ( indexes.find(ltexIndex) == indexes.end() )
{
continue;
}
const int layerIndex = indexes.find(ltexIndex)->second;
float* const pBlend = terrain->getLayerBlendMap(layerIndex)
->getBlendPointer();
const int splatSize = blendSize / size;
//setup the bounds for the shading of this texture splat
const int startX = std::max(0, relX*splatSize - blendDist);
const int endX = std::min(blendSize, (relX+1)*splatSize + blendDist);
const int startY = std::max(0, relY*splatSize - blendDist);
const int endY = std::min(blendSize, (relY+1)*splatSize + blendDist);
for ( int blendX = startX; blendX < endX; blendX++ )
{
for ( int blendY = startY; blendY < endY; blendY++ )
{
assert(blendX >= 0 && blendX < blendSize &&
"index must be within texture bounds");
assert(blendY >= 0 && blendY < blendSize &&
"index must be within texture bounds");
const int index = blendSize*(blendSize - 1 - blendY) + blendX;
if ( blendX >= relX*splatSize && blendX < (relX+1)*splatSize &&
blendY >= relY*splatSize && blendY < (relY+1)*splatSize )
{
pBlend[index] = 1;
}
else
{
pBlend[index] = std::max((float)pBlend[index], 0.5f);
}
}
}
}
}
for ( int i = 1; i < terrain->getLayerCount(); i++ )
{
Ogre::TerrainLayerBlendMap* blend = terrain->getLayerBlendMap(i);
blend->dirty();
blend->update();
}
}
//----------------------------------------------------------------------------------------------
int TerrainManager::getLtexIndexAt(MWWorld::Ptr::CellStore* store,
int x, int y)
{
//check texture index falls within the 9 cell bounds
//as this function can't cope with anything above that
assert(x >= -ESM::Land::LAND_TEXTURE_SIZE &&
y >= -ESM::Land::LAND_TEXTURE_SIZE &&
"Trying to get land textures that are out of bounds");
assert(x < 2*ESM::Land::LAND_TEXTURE_SIZE &&
y < 2*ESM::Land::LAND_TEXTURE_SIZE &&
"Trying to get land textures that are out of bounds");
assert(store != NULL && "Store pointer must be valid");
//default center cell is indexed at (1,1)
int cellX = 1;
int cellY = 1;
if ( x < 0 )
{
cellX--;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
else if ( x >= ESM::Land::LAND_TEXTURE_SIZE )
{
cellX++;
x -= ESM::Land::LAND_TEXTURE_SIZE;
}
if ( y < 0 )
{
cellY--;
y += ESM::Land::LAND_TEXTURE_SIZE;
}
else if ( y >= ESM::Land::LAND_TEXTURE_SIZE )
{
cellY++;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
return store->land[cellX][cellY]
->landData
->textures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
}
//----------------------------------------------------------------------------------------------
Ogre::TexturePtr TerrainManager::getNormalDisp(const std::string& fileName)
{
Ogre::TextureManager* const texMgr = Ogre::TextureManager::getSingletonPtr();
const std::string normalTextureName = fileName.substr(0, fileName.rfind("."))
+ "_n.dds";
if ( !texMgr->getByName(normalTextureName).isNull() )
{
return texMgr->getByName(normalTextureName);
}
const std::string textureName = "default_terrain_normal"; if ( !texMgr->getByName(textureName).isNull() )
{
return texMgr->getByName(textureName);
}
Ogre::TexturePtr tex = texMgr->createManual(
textureName, Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
Ogre::TEX_TYPE_2D, 1, 1, 0, Ogre::PF_BYTE_BGRA);
Ogre::HardwarePixelBufferSharedPtr pixelBuffer = tex->getBuffer();
pixelBuffer->lock(Ogre::HardwareBuffer::HBL_NORMAL);
const Ogre::PixelBox& pixelBox = pixelBuffer->getCurrentLock();
Ogre::uint8* pDest = static_cast<Ogre::uint8*>(pixelBox.data);
*pDest++ = 128; // B
*pDest++ = 128; // G
*pDest++ = 128; // R
*pDest++ = 0; // A
pixelBuffer->unlock();
return tex;
}
//----------------------------------------------------------------------------------------------
Ogre::TexturePtr TerrainManager::getVertexColours(MWWorld::Ptr::CellStore* store,
Ogre::uchar* alpha,
int fromX, int fromY, int size)
{
Ogre::TextureManager* const texMgr = Ogre::TextureManager::getSingletonPtr();
const char* const colours = store->land[1][1]->landData->colours;
const std::string colourTextureName = "VtexColours_" +
boost::lexical_cast<std::string>(store->cell->getGridX()) +
"_" +
boost::lexical_cast<std::string>(store->cell->getGridY()) +
"_" +
boost::lexical_cast<std::string>(fromX) +
"_" +
boost::lexical_cast<std::string>(fromY);
Ogre::TexturePtr tex = texMgr->getByName(colourTextureName);
if ( !tex.isNull() )
{
return tex;
}
tex = texMgr->createManual(colourTextureName,
Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
Ogre::TEX_TYPE_2D, size, size, 0, Ogre::PF_BYTE_BGRA);
Ogre::HardwarePixelBufferSharedPtr pixelBuffer = tex->getBuffer();
pixelBuffer->lock(Ogre::HardwareBuffer::HBL_NORMAL);
const Ogre::PixelBox& pixelBox = pixelBuffer->getCurrentLock();
Ogre::uint8* pDest = static_cast<Ogre::uint8*>(pixelBox.data);
for ( int y = 0; y < size; y++ )
{
for ( int x = 0; x < size; x++ )
{
const size_t colourOffset = (y+fromY)*3*65 + (x+fromX)*3;
assert( colourOffset >= 0 && colourOffset < 65*65*3 &&
"Colour offset is out of the expected bounds of record" );
const unsigned char r = colours[colourOffset + 0];
const unsigned char g = colours[colourOffset + 1];
const unsigned char b = colours[colourOffset + 2];
//as is the case elsewhere we need to flip the y
const size_t imageOffset = (size - 1 - y)*size*4 + x*4;
pDest[imageOffset + 0] = b;
pDest[imageOffset + 1] = g;
pDest[imageOffset + 2] = r;
pDest[imageOffset + 3] = 255; //Alpha, TODO this needs to be removed
const size_t alphaOffset = (size - 1 - y)*size + x;
if ( r == 255 && g == 255 && b == 255 ){
alpha[alphaOffset] = 0;
}else{
alpha[alphaOffset] = 128;
}
}
}
pixelBuffer->unlock();
return tex;
}
}