mirror of
https://gitlab.com/OpenMW/openmw.git
synced 2025-01-26 09:35:28 +00:00
de5a07ee71
git-svn-id: https://openmw.svn.sourceforge.net/svnroot/openmw/trunk@138 ea6a568a-9f4f-0410-981a-c910a81bb256
1394 lines
37 KiB
D
1394 lines
37 KiB
D
/*
|
|
Monster - an advanced game scripting language
|
|
Copyright (C) 2007-2009 Nicolay Korslund
|
|
Email: <korslund@gmail.com>
|
|
WWW: http://monster.snaptoad.com/
|
|
|
|
This file (expression.d) is part of the Monster script language
|
|
package.
|
|
|
|
Monster is distributed as free software: you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License
|
|
version 3, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
version 3 along with this program. If not, see
|
|
http://www.gnu.org/licenses/ .
|
|
|
|
*/
|
|
|
|
module monster.compiler.expression;
|
|
|
|
import monster.compiler.tokenizer;
|
|
import monster.compiler.scopes;
|
|
import monster.compiler.operators;
|
|
import monster.compiler.types;
|
|
import monster.compiler.assembler;
|
|
import monster.compiler.block;
|
|
import monster.compiler.statement;
|
|
import monster.compiler.variables;
|
|
import monster.compiler.functions;
|
|
|
|
import monster.vm.error;
|
|
import monster.vm.mclass;
|
|
import monster.vm.arrays;
|
|
import monster.util.list;
|
|
|
|
import std.string;
|
|
import std.stdio;
|
|
import std.utf : decode, toUTF32;
|
|
|
|
alias Expression[] ExprArray;
|
|
|
|
// An expression is basically anything that can return a value,
|
|
// including a 'void'.
|
|
abstract class Expression : Block
|
|
{
|
|
// Identify a part of an expression. The sub expressions include all
|
|
// expressions except binary operators, and it is used in identify()
|
|
// to parse the parts between such operators. All lvalues can be
|
|
// parsed with this function.
|
|
static Expression identifySub(ref TokenArray toks, bool isMember = false)
|
|
/*
|
|
out(res)
|
|
{
|
|
writefln("identifySub returned ", res);
|
|
}
|
|
body
|
|
//*/
|
|
{
|
|
Expression b;
|
|
Floc ln;
|
|
|
|
// Only identifiers (variables, properties, etc) are allowed as
|
|
// members.
|
|
if(MemberExpr.canParse(toks)) b = new MemberExpr;
|
|
else if(isMember) fail(toks[0].str ~ " can not be a member", toks[0].loc);
|
|
|
|
// The rest are not allowed for members (eg. con.(a+b) is not
|
|
// allowed)
|
|
else if(NewExpression.canParse(toks)) b = new NewExpression;
|
|
else if(TypeofExpression.canParse(toks)) b = new TypeofExpression;
|
|
else if(LiteralExpr.canParse(toks)) b = new LiteralExpr;
|
|
else if(ArrayLiteralExpr.canParse(toks)) b = new ArrayLiteralExpr;
|
|
// Sub-expression (expr)
|
|
else if(isNext(toks, TT.LeftParen))
|
|
{
|
|
b = readParens(toks);
|
|
goto noParse;
|
|
}
|
|
// Unary operators, op expr
|
|
else if(UnaryOperator.canParse(toks)) b = new UnaryOperator;
|
|
|
|
else if(isNext(toks, TT.Semicolon, ln))
|
|
fail("Use {} for empty statements, not ;", ln);
|
|
|
|
else
|
|
{
|
|
if(toks.length != 0)
|
|
fail("Cannot interpret expression " ~ toks[0].str, toks[0].loc);
|
|
else
|
|
fail("Missing expression");
|
|
}
|
|
|
|
b.parse(toks);
|
|
|
|
noParse:
|
|
|
|
// Check for . expressions and resolve the members as such. If
|
|
// the sub-expression b is followed by a . then the following
|
|
// tokens must be parsed as a new sub-expression that is a
|
|
// member of b. The problem is to call identifySub recursively
|
|
// so that expressions are ordered correctly,
|
|
// ie. first.second.third becomes (((first).second).third). The
|
|
// solution (relying on isMember) is a bit quirky but it
|
|
// works. Dots were originally handled as normal binary
|
|
// operators, but that gave wrong syntax in some corner
|
|
// cases. There is also the problem that operators such as ++
|
|
// and [] should apply to the subexpression as a whole, not the
|
|
// member, so we put those in here.
|
|
if(!isMember)
|
|
{
|
|
while(1)
|
|
{
|
|
if(isNext(toks, TT.Dot, ln))
|
|
b = new DotOperator(b, identifySub(toks, true), ln);
|
|
|
|
// After any sub-expression there might be a [] or [expr] to
|
|
// indicate array operation. We check for that here, and
|
|
// loop since the result is a subexpression which might
|
|
// itself contain more []s after it. We allow expressions
|
|
// like 20[5] syntactically, since these will be weeded out
|
|
// at the semantic level anyway.
|
|
else if(isNext(toks,TT.LeftSquare))
|
|
{
|
|
// Empty []?
|
|
if(isNext(toks, TT.RightSquare, ln))
|
|
b = new ArrayOperator(b, ln);
|
|
else // [expr] or [expr..expr]
|
|
{
|
|
Expression exp = identify(toks);
|
|
|
|
if(isNext(toks, TT.DDot))
|
|
// b[exp .. exp2]
|
|
b = new ArrayOperator(b, ln, exp, identify(toks));
|
|
else
|
|
// b[exp]
|
|
b = new ArrayOperator(b, ln, exp);
|
|
|
|
if(!isNext(toks, TT.RightSquare))
|
|
fail("Array expected closing ]", toks);
|
|
}
|
|
}
|
|
// Any expression followed by a left parenthesis is
|
|
// interpreted as a function call. We do not allow it to
|
|
// be on the next line however, as this could be
|
|
// gramatically ambiguous.
|
|
else if(!isNewline(toks) && isNext(toks,TT.LeftParen))
|
|
b = new FunctionCallExpr(b, toks);
|
|
|
|
else break;
|
|
}
|
|
// Finally, check for a single ++ or -- following an expression.
|
|
if(isNext(toks, TT.PlusPlus)) b = new UnaryOperator(b, true);
|
|
else if(isNext(toks, TT.MinusMinus)) b = new UnaryOperator(b, false);
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
private:
|
|
// This reads the contents of a parenthesis pair (...). It really
|
|
// just calls identify() again and removes the paren at the
|
|
// end. However, this ensures that operator precedence takes place
|
|
// locally inside the paren pair, and that the result is seen as one
|
|
// unit to the outside expression. And this is of course what
|
|
// parentheses are for.
|
|
static Expression readParens(ref TokenArray toks)
|
|
{
|
|
// We assume the opening parenthesis has been removed
|
|
// already. Let's get to parsin'!
|
|
Expression res = identify(toks);
|
|
|
|
if(!isNext(toks, TT.RightParen))
|
|
fail("Expected ) after expression", toks);
|
|
|
|
return res;
|
|
}
|
|
|
|
// Used in parsing expressions
|
|
struct ExpOp
|
|
{
|
|
Expression exp;
|
|
TT nextOp; // Operator to the right of the expression
|
|
Floc loc;
|
|
}
|
|
|
|
// Operators handled below.
|
|
static bool getNextOp(ref TokenArray toks, ref Token t)
|
|
{
|
|
if(toks.length == 0) return false;
|
|
TT tt = toks[0].type;
|
|
if(tt == TT.Plus || tt == TT.Minus || tt == TT.Mult ||
|
|
tt == TT.Div || tt == TT.Rem || tt == TT.IDiv ||
|
|
|
|
tt == TT.Cat ||
|
|
|
|
tt == TT.IsEqual || tt == TT.Less || tt == TT.More ||
|
|
tt == TT.LessEq || tt == TT.MoreEq || tt == TT.NotEqual ||
|
|
tt == TT.And || tt == TT.Or ||
|
|
|
|
tt == TT.IsCaseEqual || tt == TT.NotCaseEqual)
|
|
{
|
|
t = next(toks);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
|
|
// This represents the type of this expression. It must be created
|
|
// and set up (resolved) in the child classes.
|
|
Type type;
|
|
|
|
// Parse an entire expression
|
|
static Expression identify(ref TokenArray toks)
|
|
/*
|
|
out(res)
|
|
{
|
|
writefln("identify returned ", res);
|
|
}
|
|
body
|
|
//*/
|
|
{
|
|
// Create a linked list to store the expressions and operators.
|
|
LinkedList!(ExpOp) exprList;
|
|
|
|
ExpOp eo;
|
|
Token tt;
|
|
|
|
do
|
|
{
|
|
// Parse the next sub-expression
|
|
eo.exp = identifySub(toks);
|
|
|
|
// Check if this expression has an operator behind it. If
|
|
// not, it is the last expression.
|
|
if(getNextOp(toks, tt))
|
|
{
|
|
eo.nextOp = tt.type;
|
|
eo.loc = tt.loc;
|
|
}
|
|
else
|
|
eo.nextOp = TT.EOF;
|
|
|
|
// Insert the (expr+op) pair.
|
|
exprList.insert(eo);
|
|
}
|
|
while(eo.nextOp != TT.EOF);
|
|
|
|
// Replaces a pair (expr1+op1,expr2,op2) with (newExpr,op2),
|
|
// where newExpr is created from (expr1 op1 expr2).
|
|
// eg. converts a+b*c to a + (b*c). It takes the right
|
|
// expression as parameter, and removes the left, so that it can
|
|
// be called while iterating the list.
|
|
void replace(exprList.Iterator right, bool assign = false, bool boolop=false)
|
|
{
|
|
auto left = right.getPrev;
|
|
assert(left != null);
|
|
|
|
// Create the compound expression. Replace the right node,
|
|
// since it already has the correct operator.
|
|
assert(!assign);
|
|
if(boolop)
|
|
right.value.exp = new BooleanOperator(left.value.exp,
|
|
right.value.exp,
|
|
left.value.nextOp,
|
|
left.value.loc);
|
|
else
|
|
right.value.exp = new BinaryOperator(left.value.exp,
|
|
right.value.exp,
|
|
left.value.nextOp,
|
|
left.value.loc);
|
|
|
|
// Kill the left node.
|
|
exprList.remove(left);
|
|
}
|
|
|
|
static bool has(TT list[], TT type)
|
|
{
|
|
foreach(tt; list) if(tt == type) return true;
|
|
return false;
|
|
}
|
|
|
|
// Find all expression pairs bound together with one of the
|
|
// given operator types
|
|
void find(TT types[] ...)
|
|
{
|
|
auto it = exprList.getHead();
|
|
while(it !is null)
|
|
{
|
|
// Is it the right operator?
|
|
if(types.has(it.value.nextOp))
|
|
{
|
|
// Replace it and continue to the next element
|
|
it = it.getNext();
|
|
replace(it);
|
|
}
|
|
else
|
|
it = it.getNext();
|
|
}
|
|
}
|
|
|
|
// Boolean operators
|
|
void findBool(TT types[] ...)
|
|
{
|
|
auto it = exprList.getHead();
|
|
while(it !is null)
|
|
{
|
|
// Is it the right operator?
|
|
if(types.has(it.value.nextOp))
|
|
{
|
|
// Replace it and continue to the next element
|
|
it = it.getNext();
|
|
replace(it, false, true);
|
|
}
|
|
else
|
|
it = it.getNext();
|
|
}
|
|
}
|
|
|
|
// Now sort through the operators according to precedence. This
|
|
// is the precedence I use, it should be ok. (Check it against
|
|
// something else)
|
|
|
|
// / %
|
|
// *
|
|
// + -
|
|
// ~
|
|
// == != < > <= >= =i= =I= !=i= !=I=
|
|
// || &&
|
|
// = += -= *= /= %= ~=
|
|
|
|
// Dot operators are now handled in identifySub
|
|
//find(TT.Dot);
|
|
|
|
find(TT.Div, TT.Rem, TT.IDiv);
|
|
|
|
find(TT.Mult);
|
|
|
|
find(TT.Plus, TT.Minus);
|
|
|
|
find(TT.Cat);
|
|
|
|
findBool(TT.IsEqual, TT.NotEqual, TT.Less, TT.More, TT.LessEq, TT.MoreEq,
|
|
TT.IsCaseEqual, TT.NotCaseEqual);
|
|
|
|
findBool(TT.Or, TT.And);
|
|
|
|
assert(exprList.length == 1, "Cannot reduce expression list to one element");
|
|
return exprList.getHead().value.exp;
|
|
}
|
|
|
|
// Get a sensible line number for this expression. Used in error
|
|
// messages.
|
|
Floc getLoc() { return loc; }
|
|
|
|
// Used for error messages
|
|
char[] typeString() { return type.toString(); }
|
|
|
|
// Can this expression be assigned to? (most types can not)
|
|
bool isLValue() { return false; }
|
|
|
|
// Evaluate this using run-time instructions. This is only used when
|
|
// evalCTime can not be used (ie. when isCTime is false.)
|
|
void evalAsm() { fail(format("expression ", this, " not implemented")); }
|
|
|
|
// This is the equivalent of 'compile' for statements. Create
|
|
// compiled code that evaluates the expression. The result should be
|
|
// the value of the expression pushed onto the stack. Uses compile
|
|
// time information when available.
|
|
final void eval()
|
|
{
|
|
if(isCTime())
|
|
{
|
|
int[] data = evalCTime();
|
|
assert(data.length == type.getSize);
|
|
tasm.pushArray(data);
|
|
}
|
|
else
|
|
evalAsm();
|
|
}
|
|
|
|
// Evaluate and pop the value afterwards. Might be optimized later.
|
|
final void evalPop()
|
|
{
|
|
eval();
|
|
|
|
// Internal types never come from expressions that have any
|
|
// effect. Leaving them dangling without a reciever can cause
|
|
// stack bugs in some cases (since the owner and other internal
|
|
// data is never popped), so we forbid them.
|
|
if(!type.isLegal)
|
|
fail("Expression " ~ toString() ~ " has no effect", loc);
|
|
|
|
setLine();
|
|
if(!type.isVoid)
|
|
tasm.pop(type.getSize());
|
|
}
|
|
|
|
// Evaluate this expression as a destination (ie. push a pointer
|
|
// instead of a value). Only valid for LValues.
|
|
void evalDest() { assert(0, "evalDest() called for non-lvalue " ~ this.toString); }
|
|
|
|
// Pop values of the stack and store it in this expression. Only
|
|
// valid for lvalues. This is now used in place of evalDest in most
|
|
// places (although it may use evalDest internally.)
|
|
void store()
|
|
{ assert(0, "store not implemented for " ~ toString()); }
|
|
|
|
// Handles ++ and --
|
|
void incDec(TT op, bool post)
|
|
{
|
|
assert(isLValue);
|
|
assert(type.isInt || type.isUint ||
|
|
type.isLong || type.isUlong);
|
|
evalDest();
|
|
tasm.incDec(op, post, type.getSize());
|
|
}
|
|
|
|
// Can this expression be evaluated at compile time?
|
|
bool isCTime() { return false; }
|
|
|
|
// Return the compile-time value of this expression
|
|
int[] evalCTime() { assert(0); return null; }
|
|
}
|
|
|
|
// Handles typeof(exp), returns an empty expression with the meta-type
|
|
// of exp.
|
|
class TypeofExpression : Expression
|
|
{
|
|
TypeofType tt;
|
|
|
|
static bool canParse(TokenArray toks)
|
|
{ return TypeofType.canParse(toks); }
|
|
|
|
void parse(ref TokenArray toks)
|
|
{
|
|
// Let TypeofType handle the details
|
|
tt = new TypeofType;
|
|
tt.parse(toks);
|
|
}
|
|
|
|
void resolve(Scope sc)
|
|
{
|
|
tt.resolve(sc);
|
|
type = tt.getBase().getMeta();
|
|
}
|
|
|
|
// We can always determine the type at compile time
|
|
bool isCTime() { return true; }
|
|
|
|
int[] evalCTime() { return null; }
|
|
|
|
char[] toString()
|
|
{
|
|
return "typeof(" ~ tt.exp.toString ~ ")";
|
|
}
|
|
}
|
|
|
|
// new-expressions, ie. (new Sometype[]).
|
|
class NewExpression : Expression
|
|
{
|
|
// The array of expressions inside brackets. Examples:
|
|
// new int[5][10] - contains the expressions 5 and 10
|
|
// new int[][][2] - contains the expressions null, null and 2
|
|
ExprArray exArr;
|
|
|
|
// Base type of our array. Examples:
|
|
// new int[10] - base is int
|
|
// new int[10][10] - base is int
|
|
// new int[][10] - base is int[]
|
|
Type baseType;
|
|
|
|
CIndex clsInd;
|
|
|
|
NamedParam[] params;
|
|
Variable* varlist[];
|
|
|
|
static bool canParse(TokenArray toks)
|
|
{ return isNext(toks, TT.New); }
|
|
|
|
void parse(ref TokenArray toks)
|
|
{
|
|
reqNext(toks, TT.New, loc);
|
|
type = Type.identify(toks, true, exArr);
|
|
|
|
// Parameters?
|
|
ExprArray exps;
|
|
if(isNext(toks, TT.LeftParen))
|
|
FunctionCallExpr.getParams(toks, exps, params);
|
|
|
|
if(exps.length != 0)
|
|
fail("'new' can only take named parameters", loc);
|
|
}
|
|
|
|
char[] toString()
|
|
{
|
|
char[] res = "new " ~ typeString ~ "";
|
|
if(params.length)
|
|
{
|
|
res ~= "(";
|
|
foreach(i, v; params)
|
|
{
|
|
res ~= v.name.str;
|
|
res ~= "=";
|
|
res ~= v.value.toString;
|
|
if(i < params.length-1)
|
|
res ~= ", ";
|
|
}
|
|
res ~= ")";
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void resolve(Scope sc)
|
|
{
|
|
type.resolve(sc);
|
|
MonsterClass mc;
|
|
|
|
if(type.isReplacer)
|
|
type = type.getBase();
|
|
|
|
if(type.isObject)
|
|
{
|
|
// We need to find the index associated with this class, and
|
|
// pass it to the assembler.
|
|
mc = (cast(ObjectType)type).getClass();
|
|
assert(mc !is null);
|
|
clsInd = mc.getIndex();
|
|
|
|
// Don't create instances of modules!
|
|
if(mc.isModule)
|
|
fail("Cannot create instances of modules", loc);
|
|
}
|
|
else if(type.isArray)
|
|
{
|
|
assert(exArr.length == type.arrays);
|
|
|
|
// Used for array size specifiers
|
|
Type intType = BasicType.getInt;
|
|
|
|
// The remaining expressions must fill toward the right. For
|
|
// example, [1][2][3] is allowed, as is [][][1][2], but not
|
|
// [1][][2].
|
|
bool found=false;
|
|
int firstIndex = -1; // Index of the first non-empty expression
|
|
foreach(int i, ref Expression e; exArr)
|
|
if(e !is null)
|
|
{
|
|
if(!found)
|
|
{
|
|
// The first non-empty expression! Store the
|
|
// index.
|
|
found = true;
|
|
firstIndex = i;
|
|
}
|
|
|
|
// Resolve the expressions while we're at it.
|
|
e.resolve(sc);
|
|
|
|
// Check the type
|
|
intType.typeCast(e, "array index");
|
|
}
|
|
else
|
|
{
|
|
if(found) // Cannot have an empty expression after a
|
|
// non-empty one.
|
|
fail("Invalid array specifier in 'new' expression", loc);
|
|
}
|
|
|
|
if(firstIndex == -1)
|
|
fail("Right-most bracket in 'new' expression must contain an expression",
|
|
loc);
|
|
|
|
// This is already true from the above check, we're
|
|
// defensive here.
|
|
assert(exArr[$-1] !is null);
|
|
|
|
// Only store non-empty expressions, since those are the
|
|
// only ones we will act on.
|
|
exArr = exArr[firstIndex..$];
|
|
|
|
// Find the base type of our allocation. This is used to
|
|
// find the initialization value and size.
|
|
baseType = type;
|
|
for(int i=exArr.length; i>0; i--)
|
|
baseType = baseType.getBase();
|
|
}
|
|
else
|
|
fail("Cannot use 'new' with type " ~ type.toString, loc);
|
|
|
|
// Resolve the parameters
|
|
if(params.length != 0)
|
|
{
|
|
if(!type.isObject)
|
|
fail("New can take parameters to class types, not " ~ type.toString, loc);
|
|
|
|
assert(mc !is null);
|
|
|
|
varlist.length = params.length;
|
|
foreach(int i, ref v; params)
|
|
{
|
|
// Lookup the variable in the class
|
|
auto look = mc.sc.lookup(v.name);
|
|
if(!look.isVar)
|
|
fail(v.name.str ~ " is not a variable in class " ~ type.toString, loc);
|
|
|
|
// Store the looked up variable
|
|
varlist[i] = look.var;
|
|
|
|
// Next resolve the expression
|
|
v.value.resolve(sc);
|
|
|
|
// Finally, convert the type
|
|
look.type.typeCast(v.value, v.name.str);
|
|
}
|
|
}
|
|
}
|
|
|
|
void evalAsm()
|
|
{
|
|
setLine();
|
|
|
|
if(type.isObject)
|
|
{
|
|
// Total stack size of parameters
|
|
int imprint = 0;
|
|
|
|
// Push the variable pointers and values on the stack
|
|
foreach(i, v; params)
|
|
{
|
|
auto lvar = varlist[i];
|
|
|
|
assert(v.value !is null);
|
|
assert(lvar !is null);
|
|
assert(lvar.sc !is null);
|
|
|
|
// Push the expression and some meta info
|
|
v.value.eval();
|
|
tasm.push(v.value.type.getSize); // Type size
|
|
tasm.push(lvar.number); // Var number
|
|
tasm.push(lvar.sc.getClass().getTreeIndex()); // Class index
|
|
|
|
// Tally up the casualties
|
|
imprint += v.value.type.getSize() + 3;
|
|
}
|
|
|
|
// Create a new object. This is done through a special byte
|
|
// code instruction.
|
|
tasm.newObj(clsInd, params.length, imprint);
|
|
}
|
|
else if(type.isArray)
|
|
{
|
|
assert(params.length == 0);
|
|
|
|
int initVal[] = baseType.defaultInit();
|
|
|
|
int rank = exArr.length; // Array nesting level
|
|
|
|
// Check that the numbers add up
|
|
assert(type.arrays == baseType.arrays + rank);
|
|
|
|
// Push the lengths on the stack
|
|
foreach(ex; exArr)
|
|
ex.eval();
|
|
|
|
setLine();
|
|
|
|
// Create an array with the given initialization and
|
|
// dimensions. The init value can be any length (number of
|
|
// ints), and elements are assumed to be the same length.
|
|
tasm.newArray(initVal, rank);
|
|
}
|
|
else assert(0, "not implemented yet");
|
|
}
|
|
}
|
|
|
|
// Array literals [expr,expr,...]. Does not cover string literals,
|
|
// those are covered by LiteralExpr below.
|
|
class ArrayLiteralExpr : Expression
|
|
{
|
|
ExprArray params;
|
|
|
|
MonsterClass cls; // Needed to insert static arrays
|
|
AIndex arrind; // Do not remove! Used for semi-permanent slices.
|
|
|
|
static bool canParse(TokenArray toks)
|
|
{ return isNext(toks, TT.LeftSquare); }
|
|
|
|
void parse(ref TokenArray toks)
|
|
{
|
|
reqNext(toks, TT.LeftSquare, loc);
|
|
|
|
Floc loc2;
|
|
if(isNext(toks, TT.RightSquare, loc2))
|
|
fail("Array literal cannot be empty. Use 'null' instead.", loc2);
|
|
|
|
// Read the first expression
|
|
params ~= Expression.identify(toks);
|
|
|
|
// Check for more expressions
|
|
while(isNext(toks, TT.Comma))
|
|
params ~= Expression.identify(toks);
|
|
|
|
reqNext(toks, TT.RightSquare);
|
|
}
|
|
|
|
char[] toString()
|
|
{
|
|
char[] res = " [";
|
|
foreach(expr; params[0..params.length-1])
|
|
res ~= expr.toString ~ ", ";
|
|
return res ~ params[params.length-1].toString ~ "] ";
|
|
}
|
|
|
|
bool isCTime()
|
|
{
|
|
foreach(p; params)
|
|
if(!p.isCTime) return false;
|
|
return true;
|
|
}
|
|
|
|
void resolve(Scope sc)
|
|
{
|
|
foreach(expr; params)
|
|
expr.resolve(sc);
|
|
|
|
assert(params.length != 0);
|
|
|
|
// Set the type
|
|
Type base = params[0].type;
|
|
type = ArrayType.get(base);
|
|
|
|
foreach(ref par; params)
|
|
{
|
|
// Check that all elements are of a usable type, and convert
|
|
// if necessary.
|
|
base.typeCast(par, "array element");
|
|
}
|
|
|
|
cls = sc.getClass();
|
|
|
|
/*
|
|
if(isCTime)
|
|
cls.reserveStatic(params.length * base.getSize);
|
|
*/
|
|
}
|
|
|
|
int[] evalCTime()
|
|
{
|
|
assert(isCTime());
|
|
|
|
// Element size and number
|
|
int elem = type.getBase().getSize();
|
|
int num = params.length;
|
|
|
|
int data[] = new int[num*elem];
|
|
|
|
// Set up the data
|
|
foreach(i, par; params)
|
|
data[i*elem..(i+1)*elem] = par.evalCTime();
|
|
|
|
// Create the array and get the index
|
|
arrind = arrays.createConst(data, elem).getIndex;
|
|
|
|
// Create an array from the index and return it as the compile
|
|
// time value
|
|
return (cast(int*)&arrind)[0..1];
|
|
}
|
|
|
|
void evalAsm()
|
|
{
|
|
assert(!isCTime());
|
|
|
|
int s = params[0].type.getSize;
|
|
assert(s >= 1);
|
|
|
|
// Push all the elements on the stack
|
|
foreach(par; params)
|
|
{
|
|
assert(par.type.getSize == s);
|
|
par.eval();
|
|
}
|
|
|
|
setLine();
|
|
|
|
// And simply pop them back into an array
|
|
tasm.popToArray(params.length, s);
|
|
}
|
|
}
|
|
|
|
// Expression representing a literal or other special single-token
|
|
// values. Supported tokens are StringLiteral, Int/FloatLiteral, True,
|
|
// False, Null, Dollar and This. Array literals are handled by
|
|
// ArrayLiteralExpr.
|
|
class LiteralExpr : Expression
|
|
{
|
|
Token value;
|
|
|
|
// Values (used depending on type)
|
|
int ival;
|
|
dchar dval; // Characters are handled internally as dchars
|
|
float fval;
|
|
|
|
// The array operator expression for $ symbols (ie. a[b] or a[b..c])
|
|
ArrayOperator arrOp;
|
|
|
|
// This is set if the array that $ refers to is ctime.
|
|
bool arrayCTime;
|
|
|
|
// String, with decoded escape characters etc and converted to
|
|
// utf32. We need the full dchar string here, since we might have to
|
|
// handle compile-time expressions like "hello"[2..4], which should
|
|
// return the right characters.
|
|
dchar[] strVal;
|
|
AIndex arrind; // Placed here because we return a permanent slice of it
|
|
|
|
// Used for inserting string data into the data segment.
|
|
MonsterClass cls;
|
|
|
|
static bool canParse(TokenArray toks)
|
|
{
|
|
return
|
|
isNext(toks, TT.StringLiteral) ||
|
|
isNext(toks, TT.IntLiteral) ||
|
|
isNext(toks, TT.FloatLiteral) ||
|
|
isNext(toks, TT.True) ||
|
|
isNext(toks, TT.False) ||
|
|
isNext(toks, TT.Null) ||
|
|
isNext(toks, TT.Dollar) ||
|
|
isNext(toks, TT.This);
|
|
}
|
|
|
|
void parse(ref TokenArray toks)
|
|
{
|
|
value = next(toks);
|
|
loc = value.loc;
|
|
}
|
|
|
|
char[] toString()
|
|
{
|
|
return value.str;
|
|
}
|
|
|
|
bool isRes = false;
|
|
|
|
// Convert a token to an integer. TODO: Will do base conversions etc
|
|
// later on.
|
|
static long parseIntLiteral(Token t)
|
|
{
|
|
assert(t.type == TT.IntLiteral);
|
|
return atoi(t.str);
|
|
}
|
|
|
|
void resolve(Scope sc)
|
|
{
|
|
isRes = true;
|
|
|
|
// Find the class and store it for later
|
|
cls = sc.getClass();
|
|
|
|
// The 'this' name refers to the current object, and is the same
|
|
// type as the current class.
|
|
if(value.type == TT.This)
|
|
{
|
|
// Get the type from the current class
|
|
type = sc.getClass().objType;
|
|
return;
|
|
}
|
|
|
|
// Numeric literals
|
|
if(value.type == TT.IntLiteral)
|
|
{
|
|
type = BasicType.getInt;
|
|
ival = parseIntLiteral(value);
|
|
return;
|
|
}
|
|
|
|
// Floats
|
|
if(value.type == TT.FloatLiteral)
|
|
{
|
|
type = BasicType.getFloat;
|
|
fval = atof(value.str);
|
|
return;
|
|
}
|
|
|
|
// The $ token. Only allowed in array indices.
|
|
if(value.type == TT.Dollar)
|
|
{
|
|
if(!sc.isArray)
|
|
fail("Array length $ not allowed here", loc);
|
|
|
|
type = BasicType.getInt;
|
|
arrOp = sc.getArray();
|
|
|
|
// If the array itself is compile time, then so is the
|
|
// length.
|
|
assert(arrOp.name !is null);
|
|
assert(arrOp.name.type.isArray());
|
|
arrayCTime = arrOp.name.isCTime();
|
|
return;
|
|
}
|
|
|
|
// The token 'null'
|
|
if(value.type == TT.Null)
|
|
{
|
|
// 'null' has a special type that is converted when needed
|
|
type = new NullType;
|
|
return;
|
|
}
|
|
|
|
// Bool literal
|
|
if(value.type == TT.True || value.type == TT.False)
|
|
{
|
|
type = BasicType.getBool;
|
|
if(value.type == TT.True)
|
|
ival = 1;
|
|
else
|
|
ival = 0;
|
|
return;
|
|
}
|
|
|
|
// Strings
|
|
if(value.type == TT.StringLiteral)
|
|
{
|
|
type = ArrayType.getString;
|
|
|
|
strVal = value.str32;
|
|
|
|
return;
|
|
}
|
|
|
|
fail("Unhandled literal type " ~ value.str, loc);
|
|
}
|
|
|
|
// We currently support a few kinds of constants
|
|
bool isCTime()
|
|
{
|
|
// If the array value itself is ctime, then $ is too.
|
|
if(value.type == TT.Dollar)
|
|
return arrayCTime;
|
|
|
|
return
|
|
type.isInt() || type.isBool() || type.isFloat || type.isChar ||
|
|
value.type == TT.Null || type.isString;
|
|
}
|
|
|
|
int[] evalCTime()
|
|
{
|
|
if(value.type == TT.Dollar)
|
|
{
|
|
// Get the array
|
|
assert(arrOp.name.isCTime());
|
|
int res[] = arrOp.name.evalCTime().dup;
|
|
assert(res.length == 1);
|
|
auto arf = arrays.getRef(cast(AIndex)res[0]);
|
|
|
|
// Return the length
|
|
res[0] = arf.length();
|
|
return res;
|
|
}
|
|
|
|
// Return a slice of the value
|
|
if(type.isInt || type.isBool) return (&ival)[0..1];
|
|
if(type.isChar) return (cast(int*)&dval)[0..1];
|
|
if(type.isFloat) return (cast(int*)&fval)[0..1];
|
|
|
|
if(type.isString)
|
|
{
|
|
// Create array index
|
|
arrind = arrays.createConst(cast(int[])strVal, 1).getIndex;
|
|
// Create an array from it
|
|
return (cast(int*)&arrind)[0..1];
|
|
}
|
|
|
|
// Let the type cast from NullType create the data
|
|
if(value.type == TT.Null) return null;
|
|
|
|
assert(0, "Compile time evaluation of " ~ toString ~ " not implemented yet");
|
|
}
|
|
|
|
void evalAsm()
|
|
{
|
|
assert(!isCTime());
|
|
assert(type !is null, "not resolved");
|
|
setLine();
|
|
|
|
if(value.type == TT.Dollar)
|
|
{
|
|
// The array index should already be on the stack. Get it.
|
|
auto sMark = arrOp.stackMark;
|
|
assert(sMark !is null);
|
|
tasm.pushMark(sMark);
|
|
|
|
// Convert it to the length
|
|
setLine();
|
|
tasm.getArrayLength();
|
|
}
|
|
else if(value.type == TT.This) tasm.pushThis();
|
|
else fail("Literal type '" ~ value.str ~ "' not supported yet", loc);
|
|
}
|
|
}
|
|
|
|
// Expression that handles conversion from one type to another. This
|
|
// is used for implisit casts (eg. when using ints and floats
|
|
// together) and in the future it will also parse explisit casts. It
|
|
// acts as a wrapper that inserts the correct conversion code after an
|
|
// expression is compiled. The actual conversion code is done in the
|
|
// type itself. Compile time conversion of constants will also be done
|
|
// later. I am not sure how we will handle casts between objects yet -
|
|
// then need to be checked at runtime in the vm in any case.
|
|
class CastExpression : Expression
|
|
{
|
|
// The original expression. The 'type' property in the base class
|
|
// holds the new type.
|
|
Expression orig;
|
|
|
|
this(Expression exp, Type newType)
|
|
{
|
|
orig = exp;
|
|
type = newType;
|
|
|
|
assert(type !is null);
|
|
assert(orig.type.canCastTo(type) || orig.type.canCastToExplicit(type));
|
|
}
|
|
|
|
// These would only be used if typecasts got their own unique
|
|
// syntax, eg. "cast(Type) expression" like in D.
|
|
void parse(ref TokenArray) { assert(0, "Cannot parse casts"); }
|
|
void resolve(Scope sc) { assert(0, "Cannot resolve casts"); }
|
|
|
|
bool isCTime()
|
|
{
|
|
return orig.isCTime() && orig.type.canCastCTime(type);
|
|
}
|
|
|
|
int[] evalCTime()
|
|
{
|
|
assert(isCTime());
|
|
|
|
// Let the type do the conversion
|
|
int[] res = type.typeCastCTime(orig, "");
|
|
|
|
return res;
|
|
}
|
|
|
|
void evalAsm()
|
|
{
|
|
orig.eval();
|
|
|
|
// The type does the low-level stuff
|
|
orig.type.evalCastTo(type, orig.loc);
|
|
}
|
|
|
|
char[] toString()
|
|
{
|
|
return "cast(" ~ type.toString ~ ")(" ~ orig.toString ~ ")";
|
|
}
|
|
}
|
|
|
|
// Used as the surrogate owner expression for imported
|
|
// members. Example:
|
|
// import x;
|
|
// y = 3; // refers to x.y
|
|
// y is resolved as x.y, where the owner (x) is an import holder.
|
|
abstract class ImportHolder : Expression
|
|
{
|
|
// All lookups in this import is done through this function.
|
|
abstract ScopeLookup lookup(Token name, bool autoLoad=false);
|
|
|
|
// Get a short name (for error messages)
|
|
abstract char[] getName();
|
|
|
|
// Override these to avoid duplicate imports
|
|
bool isClass(MonsterClass mc) { return false; }
|
|
bool isPack(PackageScope sc) { return false; }
|
|
|
|
override:
|
|
|
|
// Override these
|
|
char[] toString() {assert(0);}
|
|
void evalAsm() {}
|
|
|
|
// These aren't needed
|
|
final:
|
|
void parse(ref TokenArray) { assert(0); }
|
|
void resolve(Scope sc) {}
|
|
void evalDest() { assert(0); }
|
|
}
|
|
|
|
// Import holder for packages
|
|
class PackageImpHolder : ImportHolder
|
|
{
|
|
PackageScope sc;
|
|
|
|
this(PackageScope psc)
|
|
{
|
|
sc = psc;
|
|
assert(sc !is null);
|
|
|
|
type = psc.type;
|
|
assert(type !is null);
|
|
}
|
|
|
|
override:
|
|
|
|
ScopeLookup lookup(Token name, bool autoLoad=false)
|
|
{
|
|
return sc.lookup(name, autoLoad);
|
|
}
|
|
|
|
char[] getName() { return sc.toString(); }
|
|
|
|
char[] toString() { return "imported package " ~ sc.toString(); }
|
|
|
|
bool isPack(PackageScope s) { return s is sc; }
|
|
}
|
|
|
|
// Import holder for classes
|
|
class ClassImpHolder : ImportHolder
|
|
{
|
|
MonsterClass mc;
|
|
|
|
this(MonsterClass pmc)
|
|
{
|
|
mc = pmc;
|
|
|
|
// The imported class must be resolved at this point
|
|
mc.requireScope();
|
|
|
|
// Importing singletons and modules is like importing
|
|
// the object itself
|
|
if(mc.isSingleton)
|
|
type = mc.objType;
|
|
else
|
|
type = mc.classType;
|
|
|
|
assert(type !is null);
|
|
}
|
|
|
|
override:
|
|
|
|
char[] getName() { return mc.name.str; }
|
|
|
|
ScopeLookup lookup(Token name, bool autoLoad=false)
|
|
{
|
|
assert(mc !is null);
|
|
mc.requireScope();
|
|
return mc.sc.lookup(name, autoLoad);
|
|
}
|
|
|
|
|
|
char[] toString() { return "imported class " ~ mc.name.str; }
|
|
|
|
void evalAsm()
|
|
{
|
|
assert(mc !is null);
|
|
mc.requireScope();
|
|
if(mc.isSingleton)
|
|
{
|
|
assert(type.isObject);
|
|
tasm.pushSingleton(mc.getIndex());
|
|
}
|
|
}
|
|
|
|
bool isClass(MonsterClass m) { return m is mc; }
|
|
}
|
|
|
|
// An expression that works as a statement. This also handles all
|
|
// assignments, ie. expr1 = expr2. Supported operators are
|
|
// =, +=, *= /=, %=, ~=
|
|
class ExprStatement : Statement
|
|
{
|
|
Expression left;
|
|
|
|
// For assignment
|
|
TT opType;
|
|
Expression right;
|
|
Type type;
|
|
|
|
bool catElem; // For concatinations (~=), true when the right hand
|
|
// side is a single element rather than an array.
|
|
|
|
// Require a terminating semicolon or line break
|
|
bool term = true;
|
|
|
|
// True if 'left' was set in the constructor
|
|
bool leftSet = false;
|
|
|
|
this(Expression lft=null)
|
|
{
|
|
left = lft;
|
|
if(left !is null)
|
|
leftSet = true;
|
|
}
|
|
|
|
void parse(ref TokenArray toks)
|
|
{
|
|
if(left is null)
|
|
{
|
|
if(toks.length == 0)
|
|
fail("Expected statement, found end of stream.");
|
|
left = Expression.identify(toks);
|
|
}
|
|
|
|
loc = left.loc;
|
|
|
|
Token tok;
|
|
|
|
if(toks.isNext(TT.Equals, tok) ||
|
|
toks.isNext(TT.PlusEq, tok) ||
|
|
toks.isNext(TT.MinusEq, tok) ||
|
|
toks.isNext(TT.MultEq, tok) ||
|
|
toks.isNext(TT.DivEq, tok) ||
|
|
toks.isNext(TT.RemEq, tok) ||
|
|
toks.isNext(TT.IDivEq, tok) ||
|
|
toks.isNext(TT.CatEq, tok))
|
|
{
|
|
opType = tok.type;
|
|
|
|
right = Expression.identify(toks);
|
|
}
|
|
|
|
if(term) reqSep(toks);
|
|
}
|
|
|
|
char[] toString()
|
|
{
|
|
char[] res = left.toString();
|
|
if(right !is null)
|
|
{
|
|
res ~= tokenList[opType];
|
|
res ~= right.toString();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void resolve(Scope sc)
|
|
{
|
|
if(!leftSet)
|
|
left.resolve(sc);
|
|
|
|
loc = left.loc;
|
|
type = left.type;
|
|
|
|
// If this isn't an assignment, we're done.
|
|
if(right is null)
|
|
return;
|
|
|
|
right.resolve(sc);
|
|
|
|
// Check that we are allowed assignment
|
|
if(!left.isLValue)
|
|
fail("Cannot assign to expression '" ~ left.toString ~ "'", loc);
|
|
|
|
// Operators other than = and ~= are only allowed for numerical
|
|
// types.
|
|
if(opType != TT.Equals && opType != TT.CatEq && !type.isNumerical)
|
|
fail("Assignment " ~tokenList[opType] ~
|
|
" not allowed for non-numerical type " ~ left.toString(), loc);
|
|
|
|
// Is the left hand expression a sliced array?
|
|
auto arr = cast(ArrayOperator) left;
|
|
if(arr !is null && arr.isSlice)
|
|
{
|
|
assert(type.isArray);
|
|
|
|
if(opType == TT.CatEq)
|
|
fail("Cannot use ~= on array slice " ~ left.toString, loc);
|
|
|
|
// For array slices on the right hand side, the left hand
|
|
// type must macth exactly, without implisit casting. For
|
|
// example, the following is not allowed, even though 3 can
|
|
// implicitly be cast to char[]:
|
|
// char[] a;
|
|
// a[] = 3; // Error
|
|
|
|
// We are, on the other hand, allowed to assign a single
|
|
// value to a slice, eg:
|
|
// int[] i = new int[5];
|
|
// i[] = 3; // Set all elements to 3.
|
|
// In this case we ARE allowed to typecast, though.
|
|
|
|
if(right.type == left.type) return;
|
|
|
|
Type base = type.getBase();
|
|
|
|
base.typeCast(right, left.toString);
|
|
|
|
// Inform arr.store() that we're filling in a single element
|
|
arr.isFill = true;
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle concatination ~=
|
|
if(opType == TT.CatEq)
|
|
{
|
|
if(!left.type.isArray)
|
|
fail("Opertaor ~= can only be used on arrays, not " ~ left.toString ~
|
|
" of type " ~ left.typeString, left.loc);
|
|
|
|
// Array with array
|
|
if(left.type == right.type) catElem = false;
|
|
// Array with element
|
|
else if(right.type.canCastOrEqual(left.type.getBase()))
|
|
{
|
|
left.type.getBase().typeCast(right, "");
|
|
catElem = true;
|
|
}
|
|
else
|
|
fail("Cannot use operator ~= on types " ~ left.typeString ~
|
|
" and " ~ right.typeString, left.loc);
|
|
return;
|
|
}
|
|
|
|
// Cast the right side to the left type, if possible.
|
|
type.typeCast(right, left.toString);
|
|
|
|
assert(left.type == right.type);
|
|
}
|
|
|
|
void compile()
|
|
{
|
|
if(right is null)
|
|
{
|
|
// Simple expression, no assignment.
|
|
left.evalPop();
|
|
return;
|
|
}
|
|
|
|
int s = right.type.getSize;
|
|
|
|
// += -= etc are implemented without adding new
|
|
// instructions. This might change later. The "downside" to this
|
|
// approach is that the left side is evaluated two times, which
|
|
// might not matter much for lvalues anyway, but it does give
|
|
// more M-code vs native code, and thus more overhead. I'm not
|
|
// sure if a function call can ever be an lvalue or if lvalues
|
|
// can otherwise have side effects in the future. If that
|
|
// becomes the case, then this implementation will have to
|
|
// change. Right now, the expression i += 3 will be exactly
|
|
// equivalent to i = i + 3.
|
|
|
|
if(opType != TT.Equals)
|
|
{
|
|
// Get the values of both sides
|
|
left.eval();
|
|
right.eval();
|
|
|
|
setLine();
|
|
|
|
// Concatination
|
|
if(opType == TT.CatEq)
|
|
{
|
|
assert(type.isArray);
|
|
|
|
if(catElem)
|
|
// Append one element onto the array
|
|
tasm.catArrayRight(s);
|
|
else
|
|
// Concatinate two arrays.
|
|
tasm.catArray();
|
|
}
|
|
|
|
// Perform the arithmetic operation. This puts the result of
|
|
// the addition on the stack. The evalDest() and mov() below
|
|
// will store it in the right place.
|
|
else if(type.isNumerical)
|
|
{
|
|
if(opType == TT.PlusEq) tasm.add(type);
|
|
else if(opType == TT.MinusEq) tasm.sub(type);
|
|
else if(opType == TT.MultEq) tasm.mul(type);
|
|
else if(opType == TT.DivEq) tasm.div(type);
|
|
else if(opType == TT.IDivEq) tasm.idiv(type);
|
|
else if(opType == TT.RemEq) tasm.divrem(type);
|
|
else fail("Unhandled assignment operator", loc);
|
|
}
|
|
else assert(0, "Type not handled");
|
|
}
|
|
else right.eval();
|
|
|
|
// Store the value on the stack into the left expression.
|
|
setLine();
|
|
left.store();
|
|
}
|
|
}
|