1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-01 03:21:41 +00:00
OpenMW/scripts/osg_stats.py

333 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
"""
osg_stats.py is a script to analyze OpenSceneGraph log. It parses given file
and builds timeseries, histograms, plots, calculate statistics for a given
set of keys over given range of frames.
"""
import click
import collections
import matplotlib.pyplot
import numpy
import statistics
import sys
import termtables
import re
@click.command()
@click.option('--print_keys', is_flag=True,
help='Print a list of all present keys in the input file.')
@click.option('--regexp_match', is_flag=True,
help='Use all metric that match given key. Can be used with stats and timeseries.')
@click.option('--timeseries', type=str, multiple=True,
help='Show a graph for given metric over time.')
@click.option('--commulative_timeseries', type=str, multiple=True,
help='Show a graph for commulative sum of a given metric over time.')
@click.option('--hist', type=str, multiple=True,
help='Show a histogram for all values of given metric.')
@click.option('--hist_ratio', nargs=2, type=str, multiple=True,
help='Show a histogram for a ratio of two given metric (first / second). '
'Format: --hist_ratio <first_metric> <second_metric>.')
@click.option('--stdev_hist', nargs=2, type=str, multiple=True,
help='Show a histogram for a standard deviation of a given metric at given scale (number). '
'Format: --stdev_hist <metric> <scale>.')
@click.option('--plot', nargs=3, type=str, multiple=True,
help='Show a 2D plot for relation between two metrix (first is axis x, second is y)'
'using one of aggregation functions (mean, median). For example show a relation '
'between Physics Actors and physics_time_taken. Format: --plot <x> <y> <function>.')
@click.option('--stats', type=str, multiple=True,
help='Print table with stats for a given metric containing min, max, mean, median etc.')
@click.option('--precision', type=int,
help='Format floating point numbers with given precision')
@click.option('--timeseries_sum', is_flag=True,
help='Add a graph to timeseries for a sum per frame of all given timeseries metrics.')
@click.option('--commulative_timeseries_sum', is_flag=True,
help='Add a graph to timeseries for a sum per frame of all given commulative timeseries.')
@click.option('--stats_sum', is_flag=True,
help='Add a row to stats table for a sum per frame of all given stats metrics.')
@click.option('--begin_frame', type=int, default=0,
help='Start processing from this frame.')
@click.option('--end_frame', type=int, default=sys.maxsize,
help='End processing at this frame.')
@click.option('--frame_number_name', type=str, default='FrameNumber',
help='Frame number metric name.')
@click.option('--hist_threshold', type=str, multiple=True,
help='Show a histogram for given metric only for frames with threshold_name metric over threshold_value.')
@click.option('--threshold_name', type=str, default='Frame duration',
help='Frame duration metric name.')
@click.option('--threshold_value', type=float, default=1.05/60,
help='Threshold for hist_over.')
@click.argument('path', type=click.Path(), nargs=-1)
def main(print_keys, regexp_match, timeseries, hist, hist_ratio, stdev_hist, plot, stats, precision,
timeseries_sum, stats_sum, begin_frame, end_frame, path,
commulative_timeseries, commulative_timeseries_sum, frame_number_name,
hist_threshold, threshold_name, threshold_value):
sources = {v: list(read_data(v)) for v in path} if path else {'stdin': list(read_data(None))}
keys = collect_unique_keys(sources)
frames, begin_frame, end_frame = collect_per_frame(
sources=sources, keys=keys, begin_frame=begin_frame,
end_frame=end_frame, frame_number_name=frame_number_name,
)
if print_keys:
for v in keys:
print(v)
if timeseries:
draw_timeseries(sources=frames, keys=matching_keys(keys, timeseries, regexp_match), add_sum=timeseries_sum,
begin_frame=begin_frame, end_frame=end_frame)
if commulative_timeseries:
draw_commulative_timeseries(sources=frames, keys=matching_keys(keys, commulative_timeseries, regexp_match), add_sum=commulative_timeseries_sum,
begin_frame=begin_frame, end_frame=end_frame)
if hist:
draw_hists(sources=frames, keys=hist)
if hist_ratio:
draw_hist_ratio(sources=frames, pairs=hist_ratio)
if stdev_hist:
draw_stdev_hists(sources=frames, stdev_hists=stdev_hist)
if plot:
draw_plots(sources=frames, plots=plot)
if stats:
print_stats(sources=frames, keys=matching_keys(keys, stats, regexp_match), stats_sum=stats_sum, precision=precision)
if hist_threshold:
draw_hist_threshold(sources=frames, keys=hist_threshold, begin_frame=begin_frame,
threshold_name=threshold_name, threshold_value=threshold_value)
matplotlib.pyplot.show()
def read_data(path):
with open(path) if path else sys.stdin as stream:
frame = dict()
camera = 0
for line in stream:
if line.startswith('Stats Viewer'):
if frame:
camera = 0
yield frame
_, _, key, value = line.split(' ')
frame = {key: int(value)}
elif line.startswith('Stats Camera'):
camera += 1
elif line.startswith(' '):
key, value = line.strip().rsplit(maxsplit=1)
if camera:
key = f'{key} Camera {camera}'
frame[key] = to_number(value)
def collect_per_frame(sources, keys, begin_frame, end_frame, frame_number_name):
assert begin_frame < end_frame
result = collections.defaultdict(lambda: collections.defaultdict(list))
begin_frame = max(begin_frame, min(v[0][frame_number_name] for v in sources.values()))
end_frame = min(end_frame, begin_frame + max(len(v) for v in sources.values()))
for name in sources.keys():
for key in keys:
result[name][key] = [0] * (end_frame - begin_frame)
for name, frames in sources.items():
for frame in frames:
number = frame[frame_number_name]
if begin_frame <= number < end_frame:
index = number - begin_frame
for key in keys:
if key in frame:
result[name][key][index] = frame[key]
for name in result.keys():
for key in keys:
result[name][key] = numpy.array(result[name][key])
return result, begin_frame, end_frame
def collect_unique_keys(sources):
result = set()
for frames in sources.values():
for frame in frames:
for key in frame.keys():
result.add(key)
return sorted(result)
def matching_keys(keys, patterns, regexp_match):
if regexp_match:
return { key for pattern in patterns for key in keys if re.search(pattern, key) }
return keys
def draw_timeseries(sources, keys, add_sum, begin_frame, end_frame):
fig, ax = matplotlib.pyplot.subplots()
x = numpy.array(range(begin_frame, end_frame))
for name, frames in sources.items():
for key in keys:
ax.plot(x, frames[key], label=f'{key}:{name}')
if add_sum:
ax.plot(x, numpy.sum(list(frames[k] for k in keys), axis=0), label=f'sum:{name}')
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('timeseries')
def draw_commulative_timeseries(sources, keys, add_sum, begin_frame, end_frame):
fig, ax = matplotlib.pyplot.subplots()
x = numpy.array(range(begin_frame, end_frame))
for name, frames in sources.items():
for key in keys:
ax.plot(x, numpy.cumsum(frames[key]), label=f'{key}:{name}')
if add_sum:
ax.plot(x, numpy.cumsum(numpy.sum(list(frames[k] for k in keys), axis=0)), label=f'sum:{name}')
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('commulative_timeseries')
def draw_hists(sources, keys):
fig, ax = matplotlib.pyplot.subplots()
bins = numpy.linspace(
start=min(min(min(v) for k, v in f.items() if k in keys) for f in sources.values()),
stop=max(max(max(v) for k, v in f.items() if k in keys) for f in sources.values()),
num=20,
)
for name, frames in sources.items():
for key in keys:
ax.hist(frames[key], bins=bins, label=f'{key}:{name}', alpha=1 / (len(keys) * len(sources)))
ax.set_xticks(bins)
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('hists')
def draw_hist_ratio(sources, pairs):
fig, ax = matplotlib.pyplot.subplots()
bins = numpy.linspace(
start=min(min(min(a / b for a, b in zip(f[a], f[b])) for a, b in pairs) for f in sources.values()),
stop=max(max(max(a / b for a, b in zip(f[a], f[b])) for a, b in pairs) for f in sources.values()),
num=20,
)
for name, frames in sources.items():
for a, b in pairs:
ax.hist(frames[a] / frames[b], bins=bins, label=f'{a} / {b}:{name}', alpha=1 / (len(pairs) * len(sources)))
ax.set_xticks(bins)
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('hists_ratio')
def draw_stdev_hists(sources, stdev_hists):
for key, scale in stdev_hists:
scale = float(scale)
fig, ax = matplotlib.pyplot.subplots()
first_frames = next(v for v in sources.values())
median = statistics.median(first_frames[key])
stdev = statistics.stdev(first_frames[key])
start = median - stdev / 2 * scale
stop = median + stdev / 2 * scale
bins = numpy.linspace(start=start, stop=stop, num=9)
for name, frames in sources.items():
values = [v for v in frames[key] if start <= v <= stop]
ax.hist(values, bins=bins, label=f'{key}:{name}', alpha=1 / (len(stdev_hists) * len(sources)))
ax.set_xticks(bins)
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('stdev_hists')
def draw_plots(sources, plots):
fig, ax = matplotlib.pyplot.subplots()
for name, frames in sources.items():
for x_key, y_key, agg in plots:
if agg is None:
ax.plot(frames[x_key], frames[y_key], label=f'x={x_key}, y={y_key}:{name}')
elif agg:
agg_f = dict(
mean=statistics.mean,
median=statistics.median,
)[agg]
grouped = collections.defaultdict(list)
for x, y in zip(frames[x_key], frames[y_key]):
grouped[x].append(y)
aggregated = sorted((k, agg_f(v)) for k, v in grouped.items())
ax.plot(
numpy.array([v[0] for v in aggregated]),
numpy.array([v[1] for v in aggregated]),
label=f'x={x_key}, y={y_key}, agg={agg}:{name}',
)
ax.grid(True)
ax.legend()
fig.canvas.set_window_title('plots')
def print_stats(sources, keys, stats_sum, precision):
stats = list()
for name, frames in sources.items():
for key in keys:
stats.append(make_stats(source=name, key=key, values=filter_not_none(frames[key]), precision=precision))
if stats_sum:
stats.append(make_stats(source=name, key='sum', values=sum_multiple(frames, keys), precision=precision))
metrics = list(stats[0].keys())
termtables.print(
[list(v.values()) for v in stats],
header=metrics,
style=termtables.styles.markdown,
)
def draw_hist_threshold(sources, keys, begin_frame, threshold_name, threshold_value):
for name, frames in sources.items():
indices = [n for n, v in enumerate(frames[threshold_name]) if v > threshold_value]
numbers = [v + begin_frame for v in indices]
x = [v for v in range(0, len(indices))]
fig, ax = matplotlib.pyplot.subplots()
ax.set_title(f'Frames with "{threshold_name}" > {threshold_value} ({len(indices)})')
ax.bar(x, [frames[threshold_name][v] for v in indices], label=threshold_name, color='black', alpha=0.2)
prev = 0
for key in keys:
values = [frames[key][v] for v in indices]
ax.bar(x, values, bottom=prev, label=key)
prev = values
ax.hlines(threshold_value, x[0] - 1, x[-1] + 1, color='black', label='threshold', linestyles='dashed')
ax.xaxis.set_major_locator(matplotlib.pyplot.FixedLocator(x))
ax.xaxis.set_major_formatter(matplotlib.pyplot.FixedFormatter(numbers))
ax.grid(True)
ax.legend()
fig.canvas.set_window_title(f'hist_threshold:{name}')
def filter_not_none(values):
return [v for v in values if v is not None]
def fixed_float(value, precision):
return '{v:.{p}f}'.format(v=value, p=precision) if precision else value
def sum_multiple(frames, keys):
result = collections.Counter()
for key in keys:
values = frames[key]
for i, value in enumerate(values):
if value is not None:
result[i] += float(value)
return numpy.array([result[k] for k in sorted(result.keys())])
def make_stats(source, key, values, precision):
return collections.OrderedDict(
source=source,
key=key,
number=len(values),
min=fixed_float(min(values), precision),
max=fixed_float(max(values), precision),
mean=fixed_float(statistics.mean(values), precision),
median=fixed_float(statistics.median(values), precision),
stdev=fixed_float(statistics.stdev(values), precision),
q95=fixed_float(numpy.quantile(values, 0.95), precision),
)
def to_number(value):
try:
return int(value)
except ValueError:
return float(value)
if __name__ == '__main__':
main()