1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-13 06:37:57 +00:00
OpenMW/components/esmterrain/storage.cpp
2015-06-05 16:56:38 +02:00

515 lines
19 KiB
C++

#include "storage.hpp"
#include <set>
#include <osg/Image>
#include <osg/Plane>
#include <iostream>
#include <boost/algorithm/string.hpp>
#include <components/misc/resourcehelpers.hpp>
#include <components/vfs/manager.hpp>
namespace ESMTerrain
{
Storage::Storage(const VFS::Manager *vfs)
: mVFS(vfs)
{
}
bool Storage::getMinMaxHeights(float size, const osg::Vec2f &center, float &min, float &max)
{
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
assert(origin.x() == (int) origin.x());
assert(origin.y() == (int) origin.y());
int cellX = static_cast<int>(origin.x());
int cellY = static_cast<int>(origin.y());
const ESM::Land* land = getLand(cellX, cellY);
if (!land || !(land->mDataTypes&ESM::Land::DATA_VHGT))
return false;
min = std::numeric_limits<float>::max();
max = -std::numeric_limits<float>::max();
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
{
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
{
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
void Storage::fixNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mDataTypes&ESM::Land::DATA_VNML)
{
normal.x() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
}
void Storage::averageNormal(osg::Vec3f &normal, int cellX, int cellY, int col, int row)
{
osg::Vec3f n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row);
fixNormal(n2, cellX, cellY, col-1, row);
fixNormal(n3, cellX, cellY, col, row+1);
fixNormal(n4, cellX, cellY, col, row-1);
normal = (n1+n2+n3+n4);
normal.normalize();
}
void Storage::fixColour (osg::Vec4f& color, int cellX, int cellY, int col, int row)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mDataTypes&ESM::Land::DATA_VCLR)
{
color.r() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
}
void Storage::fillVertexBuffers (int lodLevel, float size, const osg::Vec2f& center,
osg::ref_ptr<osg::Vec3Array> positions,
osg::ref_ptr<osg::Vec3Array> normals,
osg::ref_ptr<osg::Vec4Array> colours)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = 1 << lodLevel;
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
assert(origin.x() == (int) origin.x());
assert(origin.y() == (int) origin.y());
int startX = static_cast<int>(origin.x());
int startY = static_cast<int>(origin.y());
size_t numVerts = static_cast<size_t>(size*(ESM::Land::LAND_SIZE - 1) / increment + 1);
positions->resize(numVerts*numVerts);
normals->resize(numVerts*numVerts);
colours->resize(numVerts*numVerts);
osg::Vec3f normal;
osg::Vec4f color;
float vertY = 0;
float vertX = 0;
float vertY_ = 0; // of current cell corner
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
{
ESM::Land* land = getLand(cellX, cellY);
if (land && !(land->mDataTypes&ESM::Land::DATA_VHGT))
land = NULL;
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
if (colStart == 0 && vertY_ != 0)
colStart += increment;
if (rowStart == 0 && vertX_ != 0)
rowStart += increment;
vertY = vertY_;
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
{
float height = -2048;
if (land)
height = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE + row];
(*positions)[static_cast<unsigned int>(vertX*numVerts + vertY)]
= osg::Vec3f((vertX / float(numVerts - 1) - 0.5f) * size * 8192,
(vertY / float(numVerts - 1) - 0.5f) * size * 8192,
height);
if (land && land->mDataTypes&ESM::Land::DATA_VNML)
{
normal.x() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row);
assert(normal.z() > 0);
(*normals)[static_cast<unsigned int>(vertX*numVerts + vertY)] = normal;
if (land && land->mDataTypes&ESM::Land::DATA_VCLR)
{
color.r() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row);
color.a() = 1;
(*colours)[static_cast<unsigned int>(vertX*numVerts + vertY)] = color;
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
}
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
int x, int y)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
ESM::Land* land = getLand(cellX, cellY);
if (land && (land->mDataTypes&ESM::Land::DATA_VTEX))
{
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, land->mPlugin);
}
else
return std::make_pair(0,0);
}
std::string Storage::getTextureName(UniqueTextureId id)
{
if (id.first == 0)
return "textures\\_land_default.dds"; // Not sure if the default texture really is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
// this is needed due to MWs messed up texture handling
std::string texture = Misc::ResourceHelpers::correctTexturePath(ltex->mTexture, mVFS);
return texture;
}
void Storage::getBlendmaps(float chunkSize, const osg::Vec2f &chunkCenter,
bool pack, ImageVector &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
{
// TODO - blending isn't completely right yet; the blending radius appears to be
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
// and interpolate the rest of the cell by hand? :/
osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize/2.f, chunkSize/2.f);
int cellX = static_cast<int>(origin.x());
int cellY = static_cast<int>(origin.y());
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will always shine through in between
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
// To get a consistent look, we need to make sure to use the same base layer in all cells.
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
textureIndices.insert(std::make_pair(0,0));
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? static_cast<int>(std::ceil((numTextures - 1) / 4.f)) : (numTextures - 1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
for (int i=0; i<numBlendmaps; ++i)
{
GLenum format = pack ? GL_RGBA : GL_ALPHA;
osg::ref_ptr<osg::Image> image (new osg::Image);
image->allocateImage(blendmapSize, blendmapSize, 1, format, GL_UNSIGNED_BYTE);
unsigned char* pData = image->data();
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? static_cast<int>(std::floor((layerIndex - 1) / 4.f)) : layerIndex - 1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
if (blendIndex == i)
pData[y*blendmapSize*channels + x*channels + channel] = 255;
else
pData[y*blendmapSize*channels + x*channels + channel] = 0;
}
}
blendmaps.push_back(image);
}
}
float Storage::getHeightAt(const osg::Vec3f &worldPos)
{
int cellX = static_cast<int>(std::floor(worldPos.x() / 8192.f));
int cellY = static_cast<int>(std::floor(worldPos.y() / 8192.f));
ESM::Land* land = getLand(cellX, cellY);
if (!land || !(land->mDataTypes&ESM::Land::DATA_VHGT))
return -2048;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x() - (cellX * 8192))/8192.f;
float nY = (worldPos.y() - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
endX = std::min(endX, ESM::Land::LAND_SIZE-1);
endY = std::min(endY, ESM::Land::LAND_SIZE-1);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
osg::Vec3f v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
osg::Vec3f v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
osg::Vec3f v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
osg::Vec3f v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
// define this plane in terrain space
osg::Plane plane;
// FIXME: deal with differing triangle alignment
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane = osg::Plane(v0, v1, v3);
else
plane = osg::Plane(v1, v2, v3);
}
/*
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
*/
// Solve plane equation for z
return (-plane.getNormal().x() * nX
-plane.getNormal().y() * nY
- plane[3]) / plane.getNormal().z() * 8192;
}
float Storage::getVertexHeight(const ESM::Land *land, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
}
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
{
// Already have this cached?
std::map<std::string, Terrain::LayerInfo>::iterator found = mLayerInfoMap.find(texture);
if (found != mLayerInfoMap.end())
return found->second;
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = texture;
std::string texture_ = texture;
boost::replace_last(texture_, ".", "_nh.");
if (mVFS->exists(texture_))
{
info.mNormalMap = texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", "_n.");
if (mVFS->exists(texture_))
info.mNormalMap = texture_;
}
texture_ = texture;
boost::replace_last(texture_, ".", "_diffusespec.");
if (mVFS->exists(texture_))
{
info.mDiffuseMap = texture_;
info.mSpecular = true;
}
mLayerInfoMap[texture] = info;
return info;
}
Terrain::LayerInfo Storage::getDefaultLayer()
{
Terrain::LayerInfo info;
info.mDiffuseMap = "textures\\_land_default.dds";
info.mParallax = false;
info.mSpecular = false;
return info;
}
float Storage::getCellWorldSize()
{
return static_cast<float>(ESM::Land::REAL_SIZE);
}
int Storage::getCellVertices()
{
return ESM::Land::LAND_SIZE;
}
}