1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-04 02:41:19 +00:00
OpenMW/components/lua/utilpackage.cpp

271 lines
12 KiB
C++

#include "utilpackage.hpp"
#include <algorithm>
#include <array>
#include <sstream>
#include <components/misc/color.hpp>
#include <components/misc/mathutil.hpp>
#include "luastate.hpp"
namespace sol
{
template <>
struct is_automagical<LuaUtil::Vec2> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::Vec3> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::Vec4> : std::false_type
{
};
template <>
struct is_automagical<Misc::Color> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::TransformM> : std::false_type
{
};
template <>
struct is_automagical<LuaUtil::TransformQ> : std::false_type
{
};
}
namespace LuaUtil
{
namespace
{
template <typename T>
void addVectorMethods(sol::usertype<T>& vectorType)
{
vectorType[sol::meta_function::unary_minus] = [](const T& a) { return -a; };
vectorType[sol::meta_function::addition] = [](const T& a, const T& b) { return a + b; };
vectorType[sol::meta_function::subtraction] = [](const T& a, const T& b) { return a - b; };
vectorType[sol::meta_function::equal_to] = [](const T& a, const T& b) { return a == b; };
vectorType[sol::meta_function::multiplication] = sol::overload(
[](const T& a, float c) { return a * c; }, [](const T& a, const T& b) { return a * b; });
vectorType[sol::meta_function::division] = [](const T& a, float c) { return a / c; };
vectorType["dot"] = [](const T& a, const T b) { return a * b; };
vectorType["length"] = &T::length;
vectorType["length2"] = &T::length2;
vectorType["normalize"] = [](const T& v) {
float len = v.length();
if (len == 0)
return std::make_tuple(T(), 0.f);
else
return std::make_tuple(v * (1.f / len), len);
};
vectorType["emul"] = [](const T& a, const T& b) {
T result;
for (int i = 0; i < T::num_components; ++i)
result[i] = a[i] * b[i];
return result;
};
vectorType["ediv"] = [](const T& a, const T& b) {
T result;
for (int i = 0; i < T::num_components; ++i)
result[i] = a[i] / b[i];
return result;
};
vectorType[sol::meta_function::to_string] = [](const T& v) {
std::stringstream ss;
ss << "(" << v[0];
for (int i = 1; i < T::num_components; ++i)
ss << ", " << v[i];
ss << ")";
return ss.str();
};
}
}
sol::table initUtilPackage(lua_State* L)
{
sol::state_view lua(L);
sol::table util(lua, sol::create);
// Lua bindings for Vec2
util["vector2"] = [](float x, float y) { return Vec2(x, y); };
sol::usertype<Vec2> vec2Type = lua.new_usertype<Vec2>("Vec2");
vec2Type["x"] = sol::readonly_property([](const Vec2& v) -> float { return v.x(); });
vec2Type["y"] = sol::readonly_property([](const Vec2& v) -> float { return v.y(); });
addVectorMethods<Vec2>(vec2Type);
vec2Type["rotate"] = &Misc::rotateVec2f;
// Lua bindings for Vec3
util["vector3"] = [](float x, float y, float z) { return Vec3(x, y, z); };
sol::usertype<Vec3> vec3Type = lua.new_usertype<Vec3>("Vec3");
vec3Type["x"] = sol::readonly_property([](const Vec3& v) -> float { return v.x(); });
vec3Type["y"] = sol::readonly_property([](const Vec3& v) -> float { return v.y(); });
vec3Type["z"] = sol::readonly_property([](const Vec3& v) -> float { return v.z(); });
addVectorMethods<Vec3>(vec3Type);
vec3Type[sol::meta_function::involution] = [](const Vec3& a, const Vec3& b) { return a ^ b; };
vec3Type["cross"] = [](const Vec3& a, const Vec3& b) { return a ^ b; };
// Lua bindings for Vec4
util["vector4"] = [](float x, float y, float z, float w) { return Vec4(x, y, z, w); };
sol::usertype<Vec4> vec4Type = lua.new_usertype<Vec4>("Vec4");
vec4Type["x"] = sol::readonly_property([](const Vec4& v) -> float { return v.x(); });
vec4Type["y"] = sol::readonly_property([](const Vec4& v) -> float { return v.y(); });
vec4Type["z"] = sol::readonly_property([](const Vec4& v) -> float { return v.z(); });
vec4Type["w"] = sol::readonly_property([](const Vec4& v) -> float { return v.w(); });
addVectorMethods<Vec4>(vec4Type);
// Lua bindings for Color
sol::usertype<Misc::Color> colorType = lua.new_usertype<Misc::Color>("Color");
colorType["r"] = sol::readonly_property([](const Misc::Color& c) { return c.r(); });
colorType["g"] = sol::readonly_property([](const Misc::Color& c) { return c.g(); });
colorType["b"] = sol::readonly_property([](const Misc::Color& c) { return c.b(); });
colorType["a"] = sol::readonly_property([](const Misc::Color& c) { return c.a(); });
colorType[sol::meta_function::to_string] = [](const Misc::Color& c) { return c.toString(); };
colorType["asRgba"] = [](const Misc::Color& c) { return Vec4(c.r(), c.g(), c.b(), c.a()); };
colorType["asRgb"] = [](const Misc::Color& c) { return Vec3(c.r(), c.g(), c.b()); };
colorType["asHex"] = [](const Misc::Color& c) { return c.toHex(); };
sol::table color(lua, sol::create);
color["rgba"] = [](float r, float g, float b, float a) { return Misc::Color(r, g, b, a); };
color["rgb"] = [](float r, float g, float b) { return Misc::Color(r, g, b, 1); };
color["hex"] = [](std::string_view hex) { return Misc::Color::fromHex(hex); };
util["color"] = LuaUtil::makeReadOnly(color);
// Lua bindings for Transform
sol::usertype<TransformM> transMType = lua.new_usertype<TransformM>("TransformM");
sol::usertype<TransformQ> transQType = lua.new_usertype<TransformQ>("TransformQ");
sol::table transforms(lua, sol::create);
util["transform"] = LuaUtil::makeReadOnly(transforms);
transforms["identity"] = sol::make_object(lua, TransformM{ osg::Matrixf::identity() });
transforms["move"] = sol::overload([](const Vec3& v) { return TransformM{ osg::Matrixf::translate(v) }; },
[](float x, float y, float z) { return TransformM{ osg::Matrixf::translate(x, y, z) }; });
transforms["scale"] = sol::overload([](const Vec3& v) { return TransformM{ osg::Matrixf::scale(v) }; },
[](float x, float y, float z) { return TransformM{ osg::Matrixf::scale(x, y, z) }; });
transforms["rotate"] = [](float angle, const Vec3& axis) { return TransformQ{ osg::Quat(angle, axis) }; };
transforms["rotateX"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(-1, 0, 0)) }; };
transforms["rotateY"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(0, -1, 0)) }; };
transforms["rotateZ"] = [](float angle) { return TransformQ{ osg::Quat(angle, Vec3(0, 0, -1)) }; };
transMType[sol::meta_function::multiplication]
= sol::overload([](const TransformM& a, const Vec3& b) { return a.mM.preMult(b); },
[](const TransformM& a, const TransformM& b) { return TransformM{ b.mM * a.mM }; },
[](const TransformM& a, const TransformQ& b) {
TransformM res{ a.mM };
res.mM.preMultRotate(b.mQ);
return res;
});
transMType[sol::meta_function::to_string] = [](const TransformM& m) {
osg::Vec3f trans, scale;
osg::Quat rotation, so;
m.mM.decompose(trans, rotation, scale, so);
osg::Quat::value_type rot_angle, so_angle;
osg::Vec3f rot_axis, so_axis;
rotation.getRotate(rot_angle, rot_axis);
so.getRotate(so_angle, so_axis);
std::stringstream ss;
ss << "TransformM{ ";
if (trans.length2() > 0)
ss << "move(" << trans.x() << ", " << trans.y() << ", " << trans.z() << ") ";
if (rot_angle != 0)
ss << "rotation(angle=" << rot_angle << ", axis=(" << rot_axis.x() << ", " << rot_axis.y() << ", "
<< rot_axis.z() << ")) ";
if (scale.x() != 1 || scale.y() != 1 || scale.z() != 1)
ss << "scale(" << scale.x() << ", " << scale.y() << ", " << scale.z() << ") ";
if (so_angle != 0)
ss << "rotation(angle=" << so_angle << ", axis=(" << so_axis.x() << ", " << so_axis.y() << ", "
<< so_axis.z() << ")) ";
ss << "}";
return ss.str();
};
transMType["apply"] = [](const TransformM& a, const Vec3& b) { return a.mM.preMult(b); },
transMType["inverse"] = [](const TransformM& m) {
TransformM res;
if (!res.mM.invert_4x3(m.mM))
throw std::runtime_error("This Transform is not invertible");
return res;
};
transQType[sol::meta_function::multiplication]
= sol::overload([](const TransformQ& a, const Vec3& b) { return a.mQ * b; },
[](const TransformQ& a, const TransformQ& b) { return TransformQ{ b.mQ * a.mQ }; },
[](const TransformQ& a, const TransformM& b) {
TransformM res{ b };
res.mM.postMultRotate(a.mQ);
return res;
});
transQType[sol::meta_function::to_string] = [](const TransformQ& q) {
osg::Quat::value_type angle;
osg::Vec3f axis;
q.mQ.getRotate(angle, axis);
std::stringstream ss;
ss << "TransformQ{ rotation(angle=" << angle << ", axis=(" << axis.x() << ", " << axis.y() << ", "
<< axis.z() << ")) }";
return ss.str();
};
transQType["apply"] = [](const TransformQ& a, const Vec3& b) { return a.mQ * b; },
transQType["inverse"] = [](const TransformQ& q) { return TransformQ{ q.mQ.inverse() }; };
// Utility functions
util["clamp"] = [](double value, double from, double to) { return std::clamp(value, from, to); };
// NOTE: `util["clamp"] = std::clamp<float>` causes error 'AddressSanitizer: stack-use-after-scope'
util["normalizeAngle"] = &Misc::normalizeAngle;
util["makeReadOnly"] = [](const sol::table& tbl) { return makeReadOnly(tbl, /*strictIndex=*/false); };
util["makeStrictReadOnly"] = [](const sol::table& tbl) { return makeReadOnly(tbl, /*strictIndex=*/true); };
util["remap"] = [](double value, double min, double max, double newMin, double newMax) {
return newMin + (value - min) * (newMax - newMin) / (max - min);
};
util["round"] = [](double value) { return round(value); };
if (lua["bit32"] != sol::nil)
{
sol::table bit = lua["bit32"];
util["bitOr"] = bit["bor"];
util["bitAnd"] = bit["band"];
util["bitXor"] = bit["bxor"];
util["bitNot"] = bit["bnot"];
}
else
{
util["bitOr"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a |= v.as<unsigned>();
return a;
};
util["bitAnd"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a &= v.as<unsigned>();
return a;
};
util["bitXor"] = [](unsigned a, sol::variadic_args va) {
for (const auto& v : va)
a ^= v.as<unsigned>();
return a;
};
util["bitNot"] = [](unsigned a) { return ~a; };
}
util["loadCode"] = [](const std::string& code, const sol::table& env, sol::this_state s) {
sol::state_view lua(s);
sol::load_result res = lua.load(code, "", sol::load_mode::text);
if (!res.valid())
throw std::runtime_error("Lua error: " + res.get<std::string>());
sol::function fn = res;
sol::environment newEnv(lua, sol::create, env);
newEnv[sol::metatable_key][sol::meta_function::new_index] = env;
sol::set_environment(newEnv, fn);
return fn;
};
return util;
}
}