mirror of
https://gitlab.com/OpenMW/openmw.git
synced 2025-01-09 21:42:13 +00:00
515 lines
19 KiB
C++
515 lines
19 KiB
C++
#include "storage.hpp"
|
|
|
|
#include <set>
|
|
|
|
#include <osg/Image>
|
|
#include <osg/Plane>
|
|
|
|
#include <iostream>
|
|
|
|
#include <boost/algorithm/string.hpp>
|
|
|
|
#include <components/misc/resourcehelpers.hpp>
|
|
#include <components/vfs/manager.hpp>
|
|
|
|
namespace ESMTerrain
|
|
{
|
|
|
|
Storage::Storage(const VFS::Manager *vfs)
|
|
: mVFS(vfs)
|
|
{
|
|
}
|
|
|
|
bool Storage::getMinMaxHeights(float size, const osg::Vec2f ¢er, float &min, float &max)
|
|
{
|
|
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
|
|
|
|
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
|
|
|
|
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
|
|
|
|
assert(origin.x() == (int) origin.x());
|
|
assert(origin.y() == (int) origin.y());
|
|
|
|
int cellX = static_cast<int>(origin.x());
|
|
int cellY = static_cast<int>(origin.y());
|
|
|
|
const ESM::Land* land = getLand(cellX, cellY);
|
|
if (!land || !(land->mDataTypes&ESM::Land::DATA_VHGT))
|
|
return false;
|
|
|
|
min = std::numeric_limits<float>::max();
|
|
max = -std::numeric_limits<float>::max();
|
|
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
|
|
{
|
|
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
|
|
{
|
|
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
|
|
if (h > max)
|
|
max = h;
|
|
if (h < min)
|
|
min = h;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Storage::fixNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row)
|
|
{
|
|
while (col >= ESM::Land::LAND_SIZE-1)
|
|
{
|
|
++cellY;
|
|
col -= ESM::Land::LAND_SIZE-1;
|
|
}
|
|
while (row >= ESM::Land::LAND_SIZE-1)
|
|
{
|
|
++cellX;
|
|
row -= ESM::Land::LAND_SIZE-1;
|
|
}
|
|
while (col < 0)
|
|
{
|
|
--cellY;
|
|
col += ESM::Land::LAND_SIZE-1;
|
|
}
|
|
while (row < 0)
|
|
{
|
|
--cellX;
|
|
row += ESM::Land::LAND_SIZE-1;
|
|
}
|
|
ESM::Land* land = getLand(cellX, cellY);
|
|
if (land && land->mDataTypes&ESM::Land::DATA_VNML)
|
|
{
|
|
normal.x() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
|
|
normal.y() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
|
|
normal.z() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
|
|
normal.normalize();
|
|
}
|
|
else
|
|
normal = osg::Vec3f(0,0,1);
|
|
}
|
|
|
|
void Storage::averageNormal(osg::Vec3f &normal, int cellX, int cellY, int col, int row)
|
|
{
|
|
osg::Vec3f n1,n2,n3,n4;
|
|
fixNormal(n1, cellX, cellY, col+1, row);
|
|
fixNormal(n2, cellX, cellY, col-1, row);
|
|
fixNormal(n3, cellX, cellY, col, row+1);
|
|
fixNormal(n4, cellX, cellY, col, row-1);
|
|
normal = (n1+n2+n3+n4);
|
|
normal.normalize();
|
|
}
|
|
|
|
void Storage::fixColour (osg::Vec4f& color, int cellX, int cellY, int col, int row)
|
|
{
|
|
if (col == ESM::Land::LAND_SIZE-1)
|
|
{
|
|
++cellY;
|
|
col = 0;
|
|
}
|
|
if (row == ESM::Land::LAND_SIZE-1)
|
|
{
|
|
++cellX;
|
|
row = 0;
|
|
}
|
|
ESM::Land* land = getLand(cellX, cellY);
|
|
if (land && land->mDataTypes&ESM::Land::DATA_VCLR)
|
|
{
|
|
color.r() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
|
|
color.g() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
|
|
color.b() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
|
|
}
|
|
else
|
|
{
|
|
color.r() = 1;
|
|
color.g() = 1;
|
|
color.b() = 1;
|
|
}
|
|
|
|
}
|
|
|
|
void Storage::fillVertexBuffers (int lodLevel, float size, const osg::Vec2f& center,
|
|
osg::ref_ptr<osg::Vec3Array> positions,
|
|
osg::ref_ptr<osg::Vec3Array> normals,
|
|
osg::ref_ptr<osg::Vec4Array> colours)
|
|
{
|
|
// LOD level n means every 2^n-th vertex is kept
|
|
size_t increment = 1 << lodLevel;
|
|
|
|
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
|
|
assert(origin.x() == (int) origin.x());
|
|
assert(origin.y() == (int) origin.y());
|
|
|
|
int startX = static_cast<int>(origin.x());
|
|
int startY = static_cast<int>(origin.y());
|
|
|
|
size_t numVerts = static_cast<size_t>(size*(ESM::Land::LAND_SIZE - 1) / increment + 1);
|
|
|
|
positions->resize(numVerts*numVerts);
|
|
normals->resize(numVerts*numVerts);
|
|
colours->resize(numVerts*numVerts);
|
|
|
|
osg::Vec3f normal;
|
|
osg::Vec4f color;
|
|
|
|
float vertY = 0;
|
|
float vertX = 0;
|
|
|
|
float vertY_ = 0; // of current cell corner
|
|
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
|
|
{
|
|
float vertX_ = 0; // of current cell corner
|
|
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
|
|
{
|
|
ESM::Land* land = getLand(cellX, cellY);
|
|
if (land && !(land->mDataTypes&ESM::Land::DATA_VHGT))
|
|
land = NULL;
|
|
|
|
int rowStart = 0;
|
|
int colStart = 0;
|
|
// Skip the first row / column unless we're at a chunk edge,
|
|
// since this row / column is already contained in a previous cell
|
|
if (colStart == 0 && vertY_ != 0)
|
|
colStart += increment;
|
|
if (rowStart == 0 && vertX_ != 0)
|
|
rowStart += increment;
|
|
|
|
vertY = vertY_;
|
|
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
|
|
{
|
|
vertX = vertX_;
|
|
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
|
|
{
|
|
float height = -2048;
|
|
if (land)
|
|
height = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE + row];
|
|
|
|
(*positions)[static_cast<unsigned int>(vertX*numVerts + vertY)]
|
|
= osg::Vec3f((vertX / float(numVerts - 1) - 0.5f) * size * 8192,
|
|
(vertY / float(numVerts - 1) - 0.5f) * size * 8192,
|
|
height);
|
|
|
|
if (land && land->mDataTypes&ESM::Land::DATA_VNML)
|
|
{
|
|
normal.x() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
|
|
normal.y() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
|
|
normal.z() = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
|
|
normal.normalize();
|
|
}
|
|
else
|
|
normal = osg::Vec3f(0,0,1);
|
|
|
|
// Normals apparently don't connect seamlessly between cells
|
|
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
|
|
fixNormal(normal, cellX, cellY, col, row);
|
|
|
|
// some corner normals appear to be complete garbage (z < 0)
|
|
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
|
|
averageNormal(normal, cellX, cellY, col, row);
|
|
|
|
assert(normal.z() > 0);
|
|
|
|
(*normals)[static_cast<unsigned int>(vertX*numVerts + vertY)] = normal;
|
|
|
|
if (land && land->mDataTypes&ESM::Land::DATA_VCLR)
|
|
{
|
|
color.r() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
|
|
color.g() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
|
|
color.b() = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
|
|
}
|
|
else
|
|
{
|
|
color.r() = 1;
|
|
color.g() = 1;
|
|
color.b() = 1;
|
|
}
|
|
|
|
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
|
|
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
|
|
fixColour(color, cellX, cellY, col, row);
|
|
|
|
color.a() = 1;
|
|
|
|
(*colours)[static_cast<unsigned int>(vertX*numVerts + vertY)] = color;
|
|
|
|
++vertX;
|
|
}
|
|
++vertY;
|
|
}
|
|
vertX_ = vertX;
|
|
}
|
|
vertY_ = vertY;
|
|
|
|
assert(vertX_ == numVerts); // Ensure we covered whole area
|
|
}
|
|
assert(vertY_ == numVerts); // Ensure we covered whole area
|
|
}
|
|
|
|
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
|
|
int x, int y)
|
|
{
|
|
// For the first/last row/column, we need to get the texture from the neighbour cell
|
|
// to get consistent blending at the borders
|
|
--x;
|
|
if (x < 0)
|
|
{
|
|
--cellX;
|
|
x += ESM::Land::LAND_TEXTURE_SIZE;
|
|
}
|
|
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
|
|
{
|
|
++cellY;
|
|
y -= ESM::Land::LAND_TEXTURE_SIZE;
|
|
}
|
|
|
|
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
|
|
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
|
|
|
|
ESM::Land* land = getLand(cellX, cellY);
|
|
if (land && (land->mDataTypes&ESM::Land::DATA_VTEX))
|
|
{
|
|
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
|
|
if (tex == 0)
|
|
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
|
|
return std::make_pair(tex, land->mPlugin);
|
|
}
|
|
else
|
|
return std::make_pair(0,0);
|
|
}
|
|
|
|
std::string Storage::getTextureName(UniqueTextureId id)
|
|
{
|
|
if (id.first == 0)
|
|
return "textures\\_land_default.dds"; // Not sure if the default texture really is hardcoded?
|
|
|
|
// NB: All vtex ids are +1 compared to the ltex ids
|
|
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
|
|
|
|
// this is needed due to MWs messed up texture handling
|
|
std::string texture = Misc::ResourceHelpers::correctTexturePath(ltex->mTexture, mVFS);
|
|
|
|
return texture;
|
|
}
|
|
|
|
void Storage::getBlendmaps(float chunkSize, const osg::Vec2f &chunkCenter,
|
|
bool pack, ImageVector &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
|
|
{
|
|
// TODO - blending isn't completely right yet; the blending radius appears to be
|
|
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
|
|
// and interpolate the rest of the cell by hand? :/
|
|
|
|
osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize/2.f, chunkSize/2.f);
|
|
int cellX = static_cast<int>(origin.x());
|
|
int cellY = static_cast<int>(origin.y());
|
|
|
|
// Save the used texture indices so we know the total number of textures
|
|
// and number of required blend maps
|
|
std::set<UniqueTextureId> textureIndices;
|
|
// Due to the way the blending works, the base layer will always shine through in between
|
|
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
|
|
// To get a consistent look, we need to make sure to use the same base layer in all cells.
|
|
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
|
|
textureIndices.insert(std::make_pair(0,0));
|
|
|
|
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
|
|
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
|
|
{
|
|
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
|
|
textureIndices.insert(id);
|
|
}
|
|
|
|
// Makes sure the indices are sorted, or rather,
|
|
// retrieved as sorted. This is important to keep the splatting order
|
|
// consistent across cells.
|
|
std::map<UniqueTextureId, int> textureIndicesMap;
|
|
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
|
|
{
|
|
int size = textureIndicesMap.size();
|
|
textureIndicesMap[*it] = size;
|
|
layerList.push_back(getLayerInfo(getTextureName(*it)));
|
|
}
|
|
|
|
int numTextures = textureIndices.size();
|
|
// numTextures-1 since the base layer doesn't need blending
|
|
int numBlendmaps = pack ? static_cast<int>(std::ceil((numTextures - 1) / 4.f)) : (numTextures - 1);
|
|
|
|
int channels = pack ? 4 : 1;
|
|
|
|
// Second iteration - create and fill in the blend maps
|
|
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
|
|
|
|
for (int i=0; i<numBlendmaps; ++i)
|
|
{
|
|
GLenum format = pack ? GL_RGBA : GL_ALPHA;
|
|
|
|
osg::ref_ptr<osg::Image> image (new osg::Image);
|
|
image->allocateImage(blendmapSize, blendmapSize, 1, format, GL_UNSIGNED_BYTE);
|
|
unsigned char* pData = image->data();
|
|
|
|
for (int y=0; y<blendmapSize; ++y)
|
|
{
|
|
for (int x=0; x<blendmapSize; ++x)
|
|
{
|
|
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
|
|
int layerIndex = textureIndicesMap.find(id)->second;
|
|
int blendIndex = (pack ? static_cast<int>(std::floor((layerIndex - 1) / 4.f)) : layerIndex - 1);
|
|
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
|
|
|
|
if (blendIndex == i)
|
|
pData[y*blendmapSize*channels + x*channels + channel] = 255;
|
|
else
|
|
pData[y*blendmapSize*channels + x*channels + channel] = 0;
|
|
}
|
|
}
|
|
|
|
blendmaps.push_back(image);
|
|
}
|
|
}
|
|
|
|
float Storage::getHeightAt(const osg::Vec3f &worldPos)
|
|
{
|
|
int cellX = static_cast<int>(std::floor(worldPos.x() / 8192.f));
|
|
int cellY = static_cast<int>(std::floor(worldPos.y() / 8192.f));
|
|
|
|
ESM::Land* land = getLand(cellX, cellY);
|
|
if (!land || !(land->mDataTypes&ESM::Land::DATA_VHGT))
|
|
return -2048;
|
|
|
|
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
|
|
|
|
// Normalized position in the cell
|
|
float nX = (worldPos.x() - (cellX * 8192))/8192.f;
|
|
float nY = (worldPos.y() - (cellY * 8192))/8192.f;
|
|
|
|
// get left / bottom points (rounded down)
|
|
float factor = ESM::Land::LAND_SIZE - 1.0f;
|
|
float invFactor = 1.0f / factor;
|
|
|
|
int startX = static_cast<int>(nX * factor);
|
|
int startY = static_cast<int>(nY * factor);
|
|
int endX = startX + 1;
|
|
int endY = startY + 1;
|
|
|
|
endX = std::min(endX, ESM::Land::LAND_SIZE-1);
|
|
endY = std::min(endY, ESM::Land::LAND_SIZE-1);
|
|
|
|
// now get points in terrain space (effectively rounding them to boundaries)
|
|
float startXTS = startX * invFactor;
|
|
float startYTS = startY * invFactor;
|
|
float endXTS = endX * invFactor;
|
|
float endYTS = endY * invFactor;
|
|
|
|
// get parametric from start coord to next point
|
|
float xParam = (nX - startXTS) * factor;
|
|
float yParam = (nY - startYTS) * factor;
|
|
|
|
/* For even / odd tri strip rows, triangles are this shape:
|
|
even odd
|
|
3---2 3---2
|
|
| / | | \ |
|
|
0---1 0---1
|
|
*/
|
|
|
|
// Build all 4 positions in normalized cell space, using point-sampled height
|
|
osg::Vec3f v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
|
|
osg::Vec3f v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
|
|
osg::Vec3f v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
|
|
osg::Vec3f v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
|
|
// define this plane in terrain space
|
|
osg::Plane plane;
|
|
// FIXME: deal with differing triangle alignment
|
|
if (true)
|
|
{
|
|
// odd row
|
|
bool secondTri = ((1.0 - yParam) > xParam);
|
|
if (secondTri)
|
|
plane = osg::Plane(v0, v1, v3);
|
|
else
|
|
plane = osg::Plane(v1, v2, v3);
|
|
}
|
|
/*
|
|
else
|
|
{
|
|
// even row
|
|
bool secondTri = (yParam > xParam);
|
|
if (secondTri)
|
|
plane.redefine(v0, v2, v3);
|
|
else
|
|
plane.redefine(v0, v1, v2);
|
|
}
|
|
*/
|
|
|
|
// Solve plane equation for z
|
|
return (-plane.getNormal().x() * nX
|
|
-plane.getNormal().y() * nY
|
|
- plane[3]) / plane.getNormal().z() * 8192;
|
|
|
|
}
|
|
|
|
float Storage::getVertexHeight(const ESM::Land *land, int x, int y)
|
|
{
|
|
assert(x < ESM::Land::LAND_SIZE);
|
|
assert(y < ESM::Land::LAND_SIZE);
|
|
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
|
|
}
|
|
|
|
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
|
|
{
|
|
// Already have this cached?
|
|
std::map<std::string, Terrain::LayerInfo>::iterator found = mLayerInfoMap.find(texture);
|
|
if (found != mLayerInfoMap.end())
|
|
return found->second;
|
|
|
|
Terrain::LayerInfo info;
|
|
info.mParallax = false;
|
|
info.mSpecular = false;
|
|
info.mDiffuseMap = texture;
|
|
std::string texture_ = texture;
|
|
boost::replace_last(texture_, ".", "_nh.");
|
|
|
|
if (mVFS->exists(texture_))
|
|
{
|
|
info.mNormalMap = texture_;
|
|
info.mParallax = true;
|
|
}
|
|
else
|
|
{
|
|
texture_ = texture;
|
|
boost::replace_last(texture_, ".", "_n.");
|
|
if (mVFS->exists(texture_))
|
|
info.mNormalMap = texture_;
|
|
}
|
|
|
|
texture_ = texture;
|
|
boost::replace_last(texture_, ".", "_diffusespec.");
|
|
if (mVFS->exists(texture_))
|
|
{
|
|
info.mDiffuseMap = texture_;
|
|
info.mSpecular = true;
|
|
}
|
|
|
|
mLayerInfoMap[texture] = info;
|
|
|
|
return info;
|
|
}
|
|
|
|
Terrain::LayerInfo Storage::getDefaultLayer()
|
|
{
|
|
Terrain::LayerInfo info;
|
|
info.mDiffuseMap = "textures\\_land_default.dds";
|
|
info.mParallax = false;
|
|
info.mSpecular = false;
|
|
return info;
|
|
}
|
|
|
|
float Storage::getCellWorldSize()
|
|
{
|
|
return static_cast<float>(ESM::Land::REAL_SIZE);
|
|
}
|
|
|
|
int Storage::getCellVertices()
|
|
{
|
|
return ESM::Land::LAND_SIZE;
|
|
}
|
|
|
|
}
|