1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-11 09:36:37 +00:00
OpenMW/apps/openmw/mwrender/terrainstorage.cpp
scrawl 065b6d3331 Terrain: moved ESM::Land load to earlier in the startup procedure
Required for background loading as we cannot load ESM::Land data from background threads.
2014-03-05 21:46:36 +01:00

562 lines
21 KiB
C++

#include "terrainstorage.hpp"
#include <OgreVector2.h>
#include <OgreTextureManager.h>
#include <OgreStringConverter.h>
#include <OgreRenderSystem.h>
#include <OgreResourceGroupManager.h>
#include <OgreRoot.h>
#include <boost/algorithm/string.hpp>
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/esmstore.hpp"
namespace MWRender
{
void TerrainStorage::getBounds(float& minX, float& maxX, float& minY, float& maxY)
{
minX = 0, minY = 0, maxX = 0, maxY = 0;
const MWWorld::ESMStore &esmStore =
MWBase::Environment::get().getWorld()->getStore();
MWWorld::Store<ESM::Cell>::iterator it = esmStore.get<ESM::Cell>().extBegin();
for (; it != esmStore.get<ESM::Cell>().extEnd(); ++it)
{
if (it->getGridX() < minX)
minX = it->getGridX();
if (it->getGridX() > maxX)
maxX = it->getGridX();
if (it->getGridY() < minY)
minY = it->getGridY();
if (it->getGridY() > maxY)
maxY = it->getGridY();
}
// since grid coords are at cell origin, we need to add 1 cell
maxX += 1;
maxY += 1;
}
ESM::Land* TerrainStorage::getLand(int cellX, int cellY)
{
const MWWorld::ESMStore &esmStore =
MWBase::Environment::get().getWorld()->getStore();
ESM::Land* land = esmStore.get<ESM::Land>().search(cellX, cellY);
return land;
}
const ESM::LandTexture* TerrainStorage::getLandTexture(int index, short plugin)
{
const MWWorld::ESMStore &esmStore =
MWBase::Environment::get().getWorld()->getStore();
return esmStore.get<ESM::LandTexture>().find(index, plugin);
}
bool TerrainStorage::getMinMaxHeights(float size, const Ogre::Vector2 &center, float &min, float &max)
{
assert (size <= 1 && "TerrainStorage::getMinMaxHeights, chunk size should be <= 1 cell");
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int cellX = origin.x;
int cellY = origin.y;
const ESM::Land* land = getLand(cellX, cellY);
if (!land)
return false;
min = std::numeric_limits<float>().max();
max = -std::numeric_limits<float>().max();
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
{
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
{
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
void TerrainStorage::fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mHasData)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
}
void TerrainStorage::averageNormal(Ogre::Vector3 &normal, int cellX, int cellY, int col, int row)
{
Ogre::Vector3 n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row);
fixNormal(n2, cellX, cellY, col-1, row);
fixNormal(n3, cellX, cellY, col, row+1);
fixNormal(n4, cellX, cellY, col, row-1);
normal = (n1+n2+n3+n4);
normal.normalise();
}
void TerrainStorage::fixColour (Ogre::ColourValue& color, int cellX, int cellY, int col, int row)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mLandData->mUsingColours)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
}
void TerrainStorage::fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center, Terrain::Alignment align,
Ogre::HardwareVertexBufferSharedPtr vertexBuffer,
Ogre::HardwareVertexBufferSharedPtr normalBuffer,
Ogre::HardwareVertexBufferSharedPtr colourBuffer)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = 1 << lodLevel;
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int startX = origin.x;
int startY = origin.y;
size_t numVerts = size*(ESM::Land::LAND_SIZE-1)/increment + 1;
std::vector<uint8_t> colors;
colors.resize(numVerts*numVerts*4);
std::vector<float> positions;
positions.resize(numVerts*numVerts*3);
std::vector<float> normals;
normals.resize(numVerts*numVerts*3);
Ogre::Vector3 normal;
Ogre::ColourValue color;
float vertY;
float vertX;
float vertY_ = 0; // of current cell corner
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
{
ESM::Land* land = getLand(cellX, cellY);
if (land && !land->mHasData)
land = NULL;
bool hasColors = land && land->mLandData->mUsingColours;
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
if (colStart == 0 && vertY_ != 0)
colStart += increment;
if (rowStart == 0 && vertX_ != 0)
rowStart += increment;
vertY = vertY_;
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
{
positions[vertX*numVerts*3 + vertY*3] = ((vertX/float(numVerts-1)-0.5) * size * 8192);
positions[vertX*numVerts*3 + vertY*3 + 1] = ((vertY/float(numVerts-1)-0.5) * size * 8192);
if (land)
positions[vertX*numVerts*3 + vertY*3 + 2] = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
else
positions[vertX*numVerts*3 + vertY*3 + 2] = -2048;
if (land)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row);
assert(normal.z > 0);
normals[vertX*numVerts*3 + vertY*3] = normal.x;
normals[vertX*numVerts*3 + vertY*3 + 1] = normal.y;
normals[vertX*numVerts*3 + vertY*3 + 2] = normal.z;
if (hasColors)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row);
color.a = 1;
Ogre::uint32 rsColor;
Ogre::Root::getSingleton().getRenderSystem()->convertColourValue(color, &rsColor);
memcpy(&colors[vertX*numVerts*4 + vertY*4], &rsColor, sizeof(Ogre::uint32));
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
vertexBuffer->writeData(0, vertexBuffer->getSizeInBytes(), &positions[0], true);
normalBuffer->writeData(0, normalBuffer->getSizeInBytes(), &normals[0], true);
colourBuffer->writeData(0, colourBuffer->getSizeInBytes(), &colors[0], true);
}
TerrainStorage::UniqueTextureId TerrainStorage::getVtexIndexAt(int cellX, int cellY,
int x, int y)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
ESM::Land* land = getLand(cellX, cellY);
if (land)
{
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, land->mPlugin);
}
else
return std::make_pair(0,0);
}
std::string TerrainStorage::getTextureName(UniqueTextureId id)
{
if (id.first == 0)
return "_land_default.dds"; // Not sure if the default texture floatly is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
std::string texture = ltex->mTexture;
//TODO this is needed due to MWs messed up texture handling
texture = texture.substr(0, texture.rfind(".")) + ".dds";
return texture;
}
void TerrainStorage::getBlendmaps(float chunkSize, const Ogre::Vector2 &chunkCenter,
bool pack, std::vector<Ogre::TexturePtr> &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
{
// TODO - blending isn't completely right yet; the blending radius appears to be
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
// and interpolate the rest of the cell by hand? :/
Ogre::Vector2 origin = chunkCenter - Ogre::Vector2(chunkSize/2.f, chunkSize/2.f);
int cellX = origin.x;
int cellY = origin.y;
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will always shine through in between
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
// To get a consistent look, we need to make sure to use the same base layer in all cells.
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
textureIndices.insert(std::make_pair(0,0));
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? std::ceil((numTextures-1) / 4.f) : (numTextures-1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
std::vector<Ogre::uchar> data;
data.resize(blendmapSize * blendmapSize * channels, 0);
for (int i=0; i<numBlendmaps; ++i)
{
Ogre::PixelFormat format = pack ? Ogre::PF_A8B8G8R8 : Ogre::PF_A8;
static int count=0;
Ogre::TexturePtr map = Ogre::TextureManager::getSingleton().createManual("terrain/blend/"
+ Ogre::StringConverter::toString(count++), Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
Ogre::TEX_TYPE_2D, blendmapSize, blendmapSize, 0, format);
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? std::floor((layerIndex-1)/4.f) : layerIndex-1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
if (blendIndex == i)
data[y*blendmapSize*channels + x*channels + channel] = 255;
else
data[y*blendmapSize*channels + x*channels + channel] = 0;
}
}
// All done, upload to GPU
Ogre::DataStreamPtr stream(new Ogre::MemoryDataStream(&data[0], data.size()));
map->loadRawData(stream, blendmapSize, blendmapSize, format);
blendmaps.push_back(map);
}
}
float TerrainStorage::getHeightAt(const Ogre::Vector3 &worldPos)
{
int cellX = std::floor(worldPos.x / 8192.f);
int cellY = std::floor(worldPos.y / 8192.f);
ESM::Land* land = getLand(cellX, cellY);
if (!land)
return -2048;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x - (cellX * 8192))/8192.f;
float nY = (worldPos.y - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
assert(endX < ESM::Land::LAND_SIZE);
assert(endY < ESM::Land::LAND_SIZE);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
Ogre::Vector3 v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
Ogre::Vector3 v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
Ogre::Vector3 v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
Ogre::Vector3 v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
// define this plane in terrain space
Ogre::Plane plane;
// (At the moment, all rows have the same triangle alignment)
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane.redefine(v0, v1, v3);
else
plane.redefine(v1, v2, v3);
}
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
// Solve plane equation for z
return (-plane.normal.x * nX
-plane.normal.y * nY
- plane.d) / plane.normal.z * 8192;
}
float TerrainStorage::getVertexHeight(const ESM::Land *land, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
}
Terrain::LayerInfo TerrainStorage::getLayerInfo(const std::string& texture)
{
// Already have this cached?
if (mLayerInfoMap.find(texture) != mLayerInfoMap.end())
return mLayerInfoMap[texture];
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = "textures\\" + texture;
std::string texture_ = texture;
boost::replace_last(texture_, ".", "_nh.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mNormalMap = "textures\\" + texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", "_n.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
info.mNormalMap = "textures\\" + texture_;
}
texture_ = texture;
boost::replace_last(texture_, ".", "_diffusespec.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mDiffuseMap = "textures\\" + texture_;
info.mSpecular = true;
}
mLayerInfoMap[texture] = info;
return info;
}
Terrain::LayerInfo TerrainStorage::getDefaultLayer()
{
Terrain::LayerInfo info;
info.mDiffuseMap = "textures\\_land_default.dds";
info.mParallax = false;
info.mSpecular = false;
return info;
}
float TerrainStorage::getCellWorldSize()
{
return ESM::Land::REAL_SIZE;
}
int TerrainStorage::getCellVertices()
{
return ESM::Land::LAND_SIZE;
}
}