#define _USE_MATH_DEFINES #include #include "weather.hpp" #include #include #include #include "../mwbase/environment.hpp" #include "../mwbase/world.hpp" #include "../mwbase/soundmanager.hpp" #include "../mwmechanics/actorutil.hpp" #include "../mwsound/sound.hpp" #include "../mwrender/renderingmanager.hpp" #include "../mwrender/sky.hpp" #include "player.hpp" #include "esmstore.hpp" #include "fallback.hpp" #include "cellstore.hpp" using namespace MWWorld; namespace { float lerp (float x, float y, float factor) { return x * (1-factor) + y * factor; } osg::Vec4f lerp (const osg::Vec4f& x, const osg::Vec4f& y, float factor) { return x * (1-factor) + y * factor; } } Weather::Weather(const std::string& name, const MWWorld::Fallback& fallback, float stormWindSpeed, float rainSpeed, const std::string& ambientLoopSoundID, const std::string& particleEffect) : mCloudTexture(fallback.getFallbackString("Weather_" + name + "_Cloud_Texture")) , mSkySunriseColor(fallback.getFallbackColour("Weather_" + name +"_Sky_Sunrise_Color")) , mSkyDayColor(fallback.getFallbackColour("Weather_" + name + "_Sky_Day_Color")) , mSkySunsetColor(fallback.getFallbackColour("Weather_" + name + "_Sky_Sunset_Color")) , mSkyNightColor(fallback.getFallbackColour("Weather_" + name + "_Sky_Night_Color")) , mFogSunriseColor(fallback.getFallbackColour("Weather_" + name + "_Fog_Sunrise_Color")) , mFogDayColor(fallback.getFallbackColour("Weather_" + name + "_Fog_Day_Color")) , mFogSunsetColor(fallback.getFallbackColour("Weather_" + name + "_Fog_Sunset_Color")) , mFogNightColor(fallback.getFallbackColour("Weather_" + name + "_Fog_Night_Color")) , mAmbientSunriseColor(fallback.getFallbackColour("Weather_" + name + "_Ambient_Sunrise_Color")) , mAmbientDayColor(fallback.getFallbackColour("Weather_" + name + "_Ambient_Day_Color")) , mAmbientSunsetColor(fallback.getFallbackColour("Weather_" + name + "_Ambient_Sunset_Color")) , mAmbientNightColor(fallback.getFallbackColour("Weather_" + name + "_Ambient_Night_Color")) , mSunSunriseColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Sunrise_Color")) , mSunDayColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Day_Color")) , mSunSunsetColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Sunset_Color")) , mSunNightColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Night_Color")) , mLandFogDayDepth(fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Day_Depth")) , mLandFogNightDepth(fallback.getFallbackFloat("Weather_" + name + "_Land_Fog_Night_Depth")) , mSunDiscSunsetColor(fallback.getFallbackColour("Weather_" + name + "_Sun_Disc_Sunset_Color")) , mWindSpeed(fallback.getFallbackFloat("Weather_" + name + "_Wind_Speed")) , mCloudSpeed(fallback.getFallbackFloat("Weather_" + name + "_Cloud_Speed")) , mGlareView(fallback.getFallbackFloat("Weather_" + name + "_Glare_View")) , mAmbientLoopSoundID(ambientLoopSoundID) , mIsStorm(mWindSpeed > stormWindSpeed) , mRainSpeed(rainSpeed) , mRainFrequency(fallback.getFallbackFloat("Weather_" + name + "_Rain_Entrance_Speed")) , mParticleEffect(particleEffect) , mRainEffect(fallback.getFallbackBool("Weather_" + name + "_Using_Precip") ? "meshes\\raindrop.nif" : "") , mTransitionDelta(fallback.getFallbackFloat("Weather_" + name + "_Transition_Delta")) , mCloudsMaximumPercent(fallback.getFallbackFloat("Weather_" + name + "_Clouds_Maximum_Percent")) { /* Unhandled: Rain Diameter=600 ? Rain Height Min=200 ? Rain Height Max=700 ? Rain Threshold=0.6 ? Max Raindrops=650 ? */ } float Weather::transitionSeconds() const { // This formula is reversed from Morrowind by observing different Transition Delta values with Clouds // Maximum Percent set to 1.0, and watching for when the light from the sun was no longer visible. static const float deltasPerHour = 0.00835; return (deltasPerHour / mTransitionDelta) * 60.0f * 60.0f; } float Weather::cloudBlendFactor(float transitionRatio) const { // Clouds Maximum Percent affects how quickly the sky transitions from one sky texture to the next. return transitionRatio / mCloudsMaximumPercent; } MoonModel::MoonModel(const std::string& name, const MWWorld::Fallback& fallback) : mFadeInStart(fallback.getFallbackFloat("Moons_" + name + "_Fade_In_Start")) , mFadeInFinish(fallback.getFallbackFloat("Moons_" + name + "_Fade_In_Finish")) , mFadeOutStart(fallback.getFallbackFloat("Moons_" + name + "_Fade_Out_Start")) , mFadeOutFinish(fallback.getFallbackFloat("Moons_" + name + "_Fade_Out_Finish")) , mAxisOffset(fallback.getFallbackFloat("Moons_" + name + "_Axis_Offset")) , mSpeed(fallback.getFallbackFloat("Moons_" + name + "_Speed")) , mDailyIncrement(fallback.getFallbackFloat("Moons_" + name + "_Daily_Increment")) , mFadeStartAngle(fallback.getFallbackFloat("Moons_" + name + "_Fade_Start_Angle")) , mFadeEndAngle(fallback.getFallbackFloat("Moons_" + name + "_Fade_End_Angle")) , mMoonShadowEarlyFadeAngle(fallback.getFallbackFloat("Moons_" + name + "_Moon_Shadow_Early_Fade_Angle")) { // Morrowind appears to have a minimum speed in order to avoid situations where the moon couldn't conceivably // complete a rotation in a single 24 hour period. The value of 180/23 was deduced from reverse engineering. mSpeed = std::min(mSpeed, 180.0f / 23.0f); } MWRender::MoonState MoonModel::calculateState(unsigned int daysPassed, float gameHour) const { float rotationFromHorizon = angle(daysPassed, gameHour); MWRender::MoonState state = { rotationFromHorizon, mAxisOffset, // Reverse engineered from Morrowind's scene graph rotation matrices. static_cast(phase(daysPassed, gameHour)), shadowBlend(rotationFromHorizon), earlyMoonShadowAlpha(rotationFromHorizon) * hourlyAlpha(gameHour) }; return state; } inline float MoonModel::angle(unsigned int daysPassed, float gameHour) const { // Morrowind's moons start travel on one side of the horizon (let's call it H-rise) and travel 180 degrees to the // opposite horizon (let's call it H-set). Upon reaching H-set, they reset to H-rise until the next moon rise. // When calculating the angle of the moon, several cases have to be taken into account: // 1. Moon rises and then sets in one day. // 2. Moon sets and doesn't rise in one day (occurs when the moon rise hour is >= 24). // 3. Moon sets and then rises in one day. float moonRiseHourToday = moonRiseHour(daysPassed); float moonRiseAngleToday = 0; if(gameHour < moonRiseHourToday) { float moonRiseHourYesterday = moonRiseHour(daysPassed - 1); if(moonRiseHourYesterday < 24) { float moonRiseAngleYesterday = rotation(24 - moonRiseHourYesterday); if(moonRiseAngleYesterday < 180) { // The moon rose but did not set yesterday, so accumulate yesterday's angle with how much we've travelled today. moonRiseAngleToday = rotation(gameHour) + moonRiseAngleYesterday; } } } else { moonRiseAngleToday = rotation(gameHour - moonRiseHourToday); } if(moonRiseAngleToday >= 180) { // The moon set today, reset the angle to the horizon. moonRiseAngleToday = 0; } return moonRiseAngleToday; } inline float MoonModel::moonRiseHour(unsigned int daysPassed) const { // This arises from the start date of 16 Last Seed, 427 // TODO: Find an alternate formula that doesn't rely on this day being fixed. static const unsigned int startDay = 16; // This odd formula arises from the fact that on 16 Last Seed, 17 increments have occurred, meaning // that upon starting a new game, it must only calculate the moon phase as far back as 1 Last Seed. // Note that we don't modulo after adding the latest daily increment because other calculations need to // know if doing so would cause the moon rise to be postponed until the next day (which happens when // the moon rise hour is >= 24 in Morrowind). return mDailyIncrement + std::fmod((daysPassed - 1 + startDay) * mDailyIncrement, 24.0f); } inline float MoonModel::rotation(float hours) const { // 15 degrees per hour was reverse engineered from the rotation matrices of the Morrowind scene graph. // Note that this correlates to 360 / 24, which is a full rotation every 24 hours, so speed is a measure // of whole rotations that could be completed in a day. return 15.0f * mSpeed * hours; } inline unsigned int MoonModel::phase(unsigned int daysPassed, float gameHour) const { // Morrowind starts with a full moon on 16 Last Seed and then begins to wane 17 Last Seed, working on 3 day phase cycle. // Note: this is an internal helper, and as such we don't want to return MWRender::MoonState::Phase since we can't // forward declare it (C++11 strongly typed enums solve this). // If the moon didn't rise yet today, use yesterday's moon phase. if(gameHour < moonRiseHour(daysPassed)) return (daysPassed / 3) % 8; else return ((daysPassed + 1) / 3) % 8; } inline float MoonModel::shadowBlend(float angle) const { // The Fade End Angle and Fade Start Angle describe a region where the moon transitions from a solid disk // that is roughly the color of the sky, to a textured surface. // Depending on the current angle, the following values describe the ratio between the textured moon // and the solid disk: // 1. From Fade End Angle 1 to Fade Start Angle 1 (during moon rise): 0..1 // 2. From Fade Start Angle 1 to Fade Start Angle 2 (between moon rise and moon set): 1 (textured) // 3. From Fade Start Angle 2 to Fade End Angle 2 (during moon set): 1..0 // 4. From Fade End Angle 2 to Fade End Angle 1 (between moon set and moon rise): 0 (solid disk) float fadeAngle = mFadeStartAngle - mFadeEndAngle; float fadeEndAngle2 = 180.0f - mFadeEndAngle; float fadeStartAngle2 = 180.0f - mFadeStartAngle; if((angle >= mFadeEndAngle) && (angle < mFadeStartAngle)) return (angle - mFadeEndAngle) / fadeAngle; else if((angle >= mFadeStartAngle) && (angle < fadeStartAngle2)) return 1.0f; else if((angle >= fadeStartAngle2) && (angle < fadeEndAngle2)) return (fadeEndAngle2 - angle) / fadeAngle; else return 0.0f; } inline float MoonModel::hourlyAlpha(float gameHour) const { // The Fade Out Start / Finish and Fade In Start / Finish describe the hours at which the moon // appears and disappears. // Depending on the current hour, the following values describe how transparent the moon is. // 1. From Fade Out Start to Fade Out Finish: 1..0 // 2. From Fade Out Finish to Fade In Start: 0 (transparent) // 3. From Fade In Start to Fade In Finish: 0..1 // 4. From Fade In Finish to Fade Out Start: 1 (solid) if((gameHour >= mFadeOutStart) && (gameHour < mFadeOutFinish)) return (mFadeOutFinish - gameHour) / (mFadeOutFinish - mFadeOutStart); else if((gameHour >= mFadeOutFinish) && (gameHour < mFadeInStart)) return 0.0f; else if((gameHour >= mFadeInStart) && (gameHour < mFadeInFinish)) return (gameHour - mFadeInStart) / (mFadeInFinish - mFadeInStart); else return 1.0f; } inline float MoonModel::earlyMoonShadowAlpha(float angle) const { // The Moon Shadow Early Fade Angle describes an arc relative to Fade End Angle. // Depending on the current angle, the following values describe how transparent the moon is. // 1. From Moon Shadow Early Fade Angle 1 to Fade End Angle 1 (during moon rise): 0..1 // 2. From Fade End Angle 1 to Fade End Angle 2 (between moon rise and moon set): 1 (solid) // 3. From Fade End Angle 2 to Moon Shadow Early Fade Angle 2 (during moon set): 1..0 // 4. From Moon Shadow Early Fade Angle 2 to Moon Shadow Early Fade Angle 1: 0 (transparent) float moonShadowEarlyFadeAngle1 = mFadeEndAngle - mMoonShadowEarlyFadeAngle; float fadeEndAngle2 = 180.0f - mFadeEndAngle; float moonShadowEarlyFadeAngle2 = fadeEndAngle2 + mMoonShadowEarlyFadeAngle; if((angle >= moonShadowEarlyFadeAngle1) && (angle < mFadeEndAngle)) return (angle - moonShadowEarlyFadeAngle1) / mMoonShadowEarlyFadeAngle; else if((angle >= mFadeEndAngle) && (angle < fadeEndAngle2)) return 1.0f; else if((angle >= fadeEndAngle2) && (angle < moonShadowEarlyFadeAngle2)) return (moonShadowEarlyFadeAngle2 - angle) / mMoonShadowEarlyFadeAngle; else return 0.0f; } WeatherManager::WeatherManager(MWRender::RenderingManager* rendering, MWWorld::Fallback* fallback, MWWorld::ESMStore* store) : mHour(14), mWindSpeed(0.f), mIsStorm(false), mStormDirection(0,1,0), mStore(store), mRendering(rendering), mCurrentWeather("clear"), mNextWeather(""), mFirstUpdate(true), mRemainingTransitionTime(0), mThunderFlash(0), mThunderChance(0), mThunderChanceNeeded(50), mTimePassed(0), mWeatherUpdateTime(0), mThunderSoundDelay(0), mMasser("Masser", *fallback), mSecunda("Secunda", *fallback) { //Globals mThunderSoundID0 = fallback->getFallbackString("Weather_Thunderstorm_Thunder_Sound_ID_0"); mThunderSoundID1 = fallback->getFallbackString("Weather_Thunderstorm_Thunder_Sound_ID_1"); mThunderSoundID2 = fallback->getFallbackString("Weather_Thunderstorm_Thunder_Sound_ID_2"); mThunderSoundID3 = fallback->getFallbackString("Weather_Thunderstorm_Thunder_Sound_ID_3"); mSunriseTime = fallback->getFallbackFloat("Weather_Sunrise_Time"); mSunsetTime = fallback->getFallbackFloat("Weather_Sunset_Time"); mSunriseDuration = fallback->getFallbackFloat("Weather_Sunrise_Duration"); mSunsetDuration = fallback->getFallbackFloat("Weather_Sunset_Duration"); mHoursBetweenWeatherChanges = fallback->getFallbackFloat("Weather_Hours_Between_Weather_Changes"); mWeatherUpdateTime = mHoursBetweenWeatherChanges * 3600; mThunderFrequency = fallback->getFallbackFloat("Weather_Thunderstorm_Thunder_Frequency"); mThunderThreshold = fallback->getFallbackFloat("Weather_Thunderstorm_Thunder_Threshold"); mThunderSoundDelay = 0.25; mRainSpeed = fallback->getFallbackFloat("Weather_Precip_Gravity"); //Some useful values /* TODO: Use pre-sunrise_time, pre-sunset_time, * post-sunrise_time, and post-sunset_time to better * describe sunrise/sunset time. * These values are fallbacks attached to weather. */ mNightStart = mSunsetTime + mSunsetDuration; mNightEnd = mSunriseTime - 0.5f; mDayStart = mSunriseTime + mSunriseDuration; mDayEnd = mSunsetTime; addWeather("Clear", *fallback); addWeather("Cloudy", *fallback); addWeather("Foggy", *fallback); addWeather("Overcast", *fallback); addWeather("Rain", *fallback, "rain"); addWeather("Thunderstorm", *fallback, "rain heavy"); addWeather("Ashstorm", *fallback, "ashstorm", "meshes\\ashcloud.nif"); addWeather("Blight", *fallback, "blight", "meshes\\blightcloud.nif"); addWeather("Snow", *fallback, "", "meshes\\snow.nif"); addWeather("Blizzard", *fallback, "BM Blizzard", "meshes\\blizzard.nif"); } WeatherManager::~WeatherManager() { stopSounds(); } void WeatherManager::setWeather(const std::string& weather, bool instant) { if (weather == mCurrentWeather && mNextWeather == "") { mFirstUpdate = false; return; } if (instant || mFirstUpdate) { mNextWeather = ""; mCurrentWeather = weather; } else { if (mNextWeather != "") { // transition more than 50% finished? if (mRemainingTransitionTime / (findWeather(mCurrentWeather).transitionSeconds()) <= 0.5) mCurrentWeather = mNextWeather; } mNextWeather = weather; mRemainingTransitionTime = findWeather(mCurrentWeather).transitionSeconds(); } mFirstUpdate = false; } void WeatherManager::setResult(const std::string& weatherType) { const Weather& current = findWeather(weatherType); mResult.mCloudTexture = current.mCloudTexture; mResult.mCloudBlendFactor = 0; mResult.mWindSpeed = current.mWindSpeed; mResult.mCloudSpeed = current.mCloudSpeed; mResult.mGlareView = current.mGlareView; mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID; mResult.mAmbientSoundVolume = 1.f; mResult.mEffectFade = 1.f; mResult.mSunColor = current.mSunDiscSunsetColor; mResult.mIsStorm = current.mIsStorm; mResult.mRainSpeed = current.mRainSpeed; mResult.mRainFrequency = current.mRainFrequency; mResult.mParticleEffect = current.mParticleEffect; mResult.mRainEffect = current.mRainEffect; mResult.mNight = (mHour < mSunriseTime || mHour > mNightStart - 1); mResult.mFogDepth = mResult.mNight ? current.mLandFogNightDepth : current.mLandFogDayDepth; // night if (mHour <= mNightEnd || mHour >= mNightStart + 1) { mResult.mFogColor = current.mFogNightColor; mResult.mAmbientColor = current.mAmbientNightColor; mResult.mSunColor = current.mSunNightColor; mResult.mSkyColor = current.mSkyNightColor; mResult.mNightFade = 1.f; } // sunrise else if (mHour >= mNightEnd && mHour <= mDayStart + 1) { if (mHour <= mSunriseTime) { // fade in float advance = mSunriseTime - mHour; float factor = advance / 0.5f; mResult.mFogColor = lerp(current.mFogSunriseColor, current.mFogNightColor, factor); mResult.mAmbientColor = lerp(current.mAmbientSunriseColor, current.mAmbientNightColor, factor); mResult.mSunColor = lerp(current.mSunSunriseColor, current.mSunNightColor, factor); mResult.mSkyColor = lerp(current.mSkySunriseColor, current.mSkyNightColor, factor); mResult.mNightFade = factor; } else //if (mHour >= 6) { // fade out float advance = mHour - mSunriseTime; float factor = advance / 3.f; mResult.mFogColor = lerp(current.mFogSunriseColor, current.mFogDayColor, factor); mResult.mAmbientColor = lerp(current.mAmbientSunriseColor, current.mAmbientDayColor, factor); mResult.mSunColor = lerp(current.mSunSunriseColor, current.mSunDayColor, factor); mResult.mSkyColor = lerp(current.mSkySunriseColor, current.mSkyDayColor, factor); } } // day else if (mHour >= mDayStart + 1 && mHour <= mDayEnd - 1) { mResult.mFogColor = current.mFogDayColor; mResult.mAmbientColor = current.mAmbientDayColor; mResult.mSunColor = current.mSunDayColor; mResult.mSkyColor = current.mSkyDayColor; } // sunset else if (mHour >= mDayEnd - 1 && mHour <= mNightStart + 1) { if (mHour <= mDayEnd + 1) { // fade in float advance = (mDayEnd + 1) - mHour; float factor = (advance / 2); mResult.mFogColor = lerp(current.mFogSunsetColor, current.mFogDayColor, factor); mResult.mAmbientColor = lerp(current.mAmbientSunsetColor, current.mAmbientDayColor, factor); mResult.mSunColor = lerp(current.mSunSunsetColor, current.mSunDayColor, factor); mResult.mSkyColor = lerp(current.mSkySunsetColor, current.mSkyDayColor, factor); } else //if (mHour >= 19) { // fade out float advance = mHour - (mDayEnd + 1); float factor = advance / 2.f; mResult.mFogColor = lerp(current.mFogSunsetColor, current.mFogNightColor, factor); mResult.mAmbientColor = lerp(current.mAmbientSunsetColor, current.mAmbientNightColor, factor); mResult.mSunColor = lerp(current.mSunSunsetColor, current.mSunNightColor, factor); mResult.mSkyColor = lerp(current.mSkySunsetColor, current.mSkyNightColor, factor); mResult.mNightFade = factor; } } } void WeatherManager::transition(float factor) { setResult(mCurrentWeather); const MWRender::WeatherResult current = mResult; setResult(mNextWeather); const MWRender::WeatherResult other = mResult; const Weather& nextWeather = findWeather(mNextWeather); mResult.mCloudTexture = current.mCloudTexture; mResult.mNextCloudTexture = other.mCloudTexture; mResult.mCloudBlendFactor = nextWeather.cloudBlendFactor(factor); mResult.mFogColor = lerp(current.mFogColor, other.mFogColor, factor); mResult.mSunColor = lerp(current.mSunColor, other.mSunColor, factor); mResult.mSkyColor = lerp(current.mSkyColor, other.mSkyColor, factor); mResult.mAmbientColor = lerp(current.mAmbientColor, other.mAmbientColor, factor); mResult.mSunDiscColor = lerp(current.mSunDiscColor, other.mSunDiscColor, factor); mResult.mFogDepth = lerp(current.mFogDepth, other.mFogDepth, factor); mResult.mWindSpeed = lerp(current.mWindSpeed, other.mWindSpeed, factor); mResult.mCloudSpeed = lerp(current.mCloudSpeed, other.mCloudSpeed, factor); mResult.mGlareView = lerp(current.mGlareView, other.mGlareView, factor); mResult.mNightFade = lerp(current.mNightFade, other.mNightFade, factor); mResult.mNight = current.mNight; if (factor < 0.5) { mResult.mIsStorm = current.mIsStorm; mResult.mParticleEffect = current.mParticleEffect; mResult.mRainEffect = current.mRainEffect; mResult.mParticleEffect = current.mParticleEffect; mResult.mRainSpeed = current.mRainSpeed; mResult.mRainFrequency = current.mRainFrequency; mResult.mAmbientSoundVolume = 1-(factor*2); mResult.mEffectFade = mResult.mAmbientSoundVolume; mResult.mAmbientLoopSoundID = current.mAmbientLoopSoundID; } else { mResult.mIsStorm = other.mIsStorm; mResult.mParticleEffect = other.mParticleEffect; mResult.mRainEffect = other.mRainEffect; mResult.mParticleEffect = other.mParticleEffect; mResult.mRainSpeed = other.mRainSpeed; mResult.mRainFrequency = other.mRainFrequency; mResult.mAmbientSoundVolume = 2*(factor-0.5f); mResult.mEffectFade = mResult.mAmbientSoundVolume; mResult.mAmbientLoopSoundID = other.mAmbientLoopSoundID; } } void WeatherManager::update(float duration, bool paused) { float timePassed = static_cast(mTimePassed); mTimePassed = 0; mWeatherUpdateTime -= timePassed; MWBase::World* world = MWBase::Environment::get().getWorld(); const bool exterior = (world->isCellExterior() || world->isCellQuasiExterior()); if (!exterior) { mRendering->setSkyEnabled(false); //mRendering->getSkyManager()->setLightningStrength(0.f); stopSounds(); return; } switchToNextWeather(false); if (mNextWeather != "") { mRemainingTransitionTime -= timePassed; if (mRemainingTransitionTime < 0) { mCurrentWeather = mNextWeather; mNextWeather = ""; } } if (mNextWeather != "") transition(1 - (mRemainingTransitionTime / (findWeather(mCurrentWeather).transitionSeconds()))); else setResult(mCurrentWeather); mWindSpeed = mResult.mWindSpeed; mIsStorm = mResult.mIsStorm; if (mIsStorm) { MWWorld::Ptr player = world->getPlayerPtr(); osg::Vec3f playerPos (player.getRefData().getPosition().asVec3()); osg::Vec3f redMountainPos (19950, 72032, 27831); mStormDirection = (playerPos - redMountainPos); mStormDirection.z() = 0; mStormDirection.normalize(); mRendering->getSkyManager()->setStormDirection(mStormDirection); } mRendering->configureFog(mResult.mFogDepth, mResult.mFogColor); // disable sun during night if (mHour >= mNightStart || mHour <= mSunriseTime) mRendering->getSkyManager()->sunDisable(); else mRendering->getSkyManager()->sunEnable(); // Update the sun direction. Run it east to west at a fixed angle from overhead. // The sun's speed at day and night may differ, since mSunriseTime and mNightStart // mark when the sun is level with the horizon. { // Shift times into a 24-hour window beginning at mSunriseTime... float adjustedHour = mHour; float adjustedNightStart = mNightStart; if ( mHour < mSunriseTime ) adjustedHour += 24.f; if ( mNightStart < mSunriseTime ) adjustedNightStart += 24.f; const bool is_night = adjustedHour >= adjustedNightStart; const float dayDuration = adjustedNightStart - mSunriseTime; const float nightDuration = 24.f - dayDuration; double theta; if ( !is_night ) { theta = M_PI * (adjustedHour - mSunriseTime) / dayDuration; } else { theta = M_PI * (adjustedHour - adjustedNightStart) / nightDuration; } osg::Vec3f final( static_cast(cos(theta)), -0.268f, // approx tan( -15 degrees ) static_cast(sin(theta))); mRendering->setSunDirection( final * -1 ); } TimeStamp time = MWBase::Environment::get().getWorld()->getTimeStamp(); mRendering->getSkyManager()->setMasserState(mMasser.calculateState(time.getDay(), time.getHour())); mRendering->getSkyManager()->setSecundaState(mSecunda.calculateState(time.getDay(), time.getHour())); if (!paused) { if (mCurrentWeather == "thunderstorm" && mNextWeather == "") { if (mThunderFlash > 0) { // play the sound after a delay mThunderSoundDelay -= duration; if (mThunderSoundDelay <= 0) { // pick a random sound int sound = Misc::Rng::rollDice(4); std::string* soundName = NULL; if (sound == 0) soundName = &mThunderSoundID0; else if (sound == 1) soundName = &mThunderSoundID1; else if (sound == 2) soundName = &mThunderSoundID2; else if (sound == 3) soundName = &mThunderSoundID3; if (soundName) MWBase::Environment::get().getSoundManager()->playSound(*soundName, 1.0, 1.0); mThunderSoundDelay = 1000; } mThunderFlash -= duration; //if (mThunderFlash > 0) //mRendering->getSkyManager()->setLightningStrength( mThunderFlash / mThunderThreshold ); //else { mThunderChanceNeeded = static_cast(Misc::Rng::rollDice(100)); mThunderChance = 0; //mRendering->getSkyManager()->setLightningStrength( 0.f ); } } else { // no thunder active mThunderChance += duration*4; // chance increases by 4 percent every second if (mThunderChance >= mThunderChanceNeeded) { mThunderFlash = mThunderThreshold; //mRendering->getSkyManager()->setLightningStrength( mThunderFlash / mThunderThreshold ); mThunderSoundDelay = 0.25; } } } //else //mRendering->getSkyManager()->setLightningStrength(0.f); } mRendering->setAmbientColour(mResult.mAmbientColor); mRendering->setSunColour(mResult.mSunColor); mRendering->getSkyManager()->setWeather(mResult); // Play sounds if (mPlayingSoundID != mResult.mAmbientLoopSoundID) { stopSounds(); if (!mResult.mAmbientLoopSoundID.empty()) mAmbientSound = MWBase::Environment::get().getSoundManager()->playSound(mResult.mAmbientLoopSoundID, 1.0, 1.0, MWBase::SoundManager::Play_TypeSfx, MWBase::SoundManager::Play_Loop); mPlayingSoundID = mResult.mAmbientLoopSoundID; } if (mAmbientSound.get()) mAmbientSound->setVolume(mResult.mAmbientSoundVolume); } void WeatherManager::stopSounds() { if (mAmbientSound.get()) { MWBase::Environment::get().getSoundManager()->stopSound(mAmbientSound); mAmbientSound.reset(); mPlayingSoundID.clear(); } } std::string WeatherManager::nextWeather(const ESM::Region* region) const { std::vector probability; RegionModMap::const_iterator iter = mRegionMods.find(Misc::StringUtils::lowerCase(region->mId)); if(iter != mRegionMods.end()) probability = iter->second; else { probability.reserve(10); probability.push_back(region->mData.mClear); probability.push_back(region->mData.mCloudy); probability.push_back(region->mData.mFoggy); probability.push_back(region->mData.mOvercast); probability.push_back(region->mData.mRain); probability.push_back(region->mData.mThunder); probability.push_back(region->mData.mAsh); probability.push_back(region->mData.mBlight); probability.push_back(region->mData.mA); probability.push_back(region->mData.mB); } /* * All probabilities must add to 100 (responsibility of the user). * If chances A and B has values 30 and 70 then by generating * 100 numbers 1..100, 30% will be lesser or equal 30 and * 70% will be greater than 30 (in theory). */ int chance = Misc::Rng::rollDice(100) + 1; // 1..100 int sum = 0; unsigned int i = 0; for (; i < probability.size(); ++i) { sum += probability[i]; if (chance < sum) break; } switch (i) { case 1: return "cloudy"; case 2: return "foggy"; case 3: return "overcast"; case 4: return "rain"; case 5: return "thunderstorm"; case 6: return "ashstorm"; case 7: return "blight"; case 8: return "snow"; case 9: return "blizzard"; default: // case 0 return "clear"; } } void WeatherManager::setHour(const float hour) { mHour = hour; } unsigned int WeatherManager::getWeatherID() const { // Source: http://www.uesp.net/wiki/Tes3Mod:GetCurrentWeather if (mCurrentWeather == "clear") return 0; else if (mCurrentWeather == "cloudy") return 1; else if (mCurrentWeather == "foggy") return 2; else if (mCurrentWeather == "overcast") return 3; else if (mCurrentWeather == "rain") return 4; else if (mCurrentWeather == "thunderstorm") return 5; else if (mCurrentWeather == "ashstorm") return 6; else if (mCurrentWeather == "blight") return 7; else if (mCurrentWeather == "snow") return 8; else if (mCurrentWeather == "blizzard") return 9; else return 0; } void WeatherManager::changeWeather(const std::string& region, const unsigned int id) { // make sure this region exists MWBase::Environment::get().getWorld()->getStore().get().find(region); std::string weather; if (id==0) weather = "clear"; else if (id==1) weather = "cloudy"; else if (id==2) weather = "foggy"; else if (id==3) weather = "overcast"; else if (id==4) weather = "rain"; else if (id==5) weather = "thunderstorm"; else if (id==6) weather = "ashstorm"; else if (id==7) weather = "blight"; else if (id==8) weather = "snow"; else if (id==9) weather = "blizzard"; else weather = "clear"; mRegionOverrides[Misc::StringUtils::lowerCase(region)] = weather; MWWorld::Ptr player = MWMechanics::getPlayer(); if (player.isInCell()) { std::string playerRegion = player.getCell()->getCell()->mRegion; if (Misc::StringUtils::ciEqual(region, playerRegion)) setWeather(weather); } } void WeatherManager::modRegion(const std::string ®ionid, const std::vector &chances) { mRegionMods[Misc::StringUtils::lowerCase(regionid)] = chances; // Start transitioning right away if the region no longer supports the current weather type unsigned int current = getWeatherID(); if(current >= chances.size() || chances[current] == 0) mWeatherUpdateTime = 0.0f; } float WeatherManager::getWindSpeed() const { return mWindSpeed; } bool WeatherManager::isDark() const { bool exterior = (MWBase::Environment::get().getWorld()->isCellExterior() || MWBase::Environment::get().getWorld()->isCellQuasiExterior()); return exterior && (mHour < mSunriseTime || mHour > mNightStart - 1); } void WeatherManager::write(ESM::ESMWriter& writer, Loading::Listener& progress) { ESM::WeatherState state; state.mHour = mHour; state.mWindSpeed = mWindSpeed; state.mCurrentWeather = mCurrentWeather; state.mNextWeather = mNextWeather; state.mCurrentRegion = mCurrentRegion; state.mFirstUpdate = mFirstUpdate; state.mRemainingTransitionTime = mRemainingTransitionTime; state.mTimePassed = mTimePassed; writer.startRecord(ESM::REC_WTHR); state.save(writer); writer.endRecord(ESM::REC_WTHR); } bool WeatherManager::readRecord(ESM::ESMReader& reader, uint32_t type) { if(ESM::REC_WTHR == type) { // load first so that if it fails, we haven't accidentally reset the state below ESM::WeatherState state; state.load(reader); // swap in the loaded values now that we can't fail mHour = state.mHour; mWindSpeed = state.mWindSpeed; mCurrentWeather.swap(state.mCurrentWeather); mNextWeather.swap(state.mNextWeather); mCurrentRegion.swap(state.mCurrentRegion); mFirstUpdate = state.mFirstUpdate; mRemainingTransitionTime = state.mRemainingTransitionTime; mTimePassed = state.mTimePassed; return true; } return false; } void WeatherManager::clear() { stopSounds(); mRegionOverrides.clear(); mRegionMods.clear(); mThunderFlash = 0.0; mThunderChance = 0.0; mThunderChanceNeeded = 50.0; } void WeatherManager::switchToNextWeather(bool instantly) { MWBase::World* world = MWBase::Environment::get().getWorld(); if (world->isCellExterior() || world->isCellQuasiExterior()) { std::string regionstr = Misc::StringUtils::lowerCase(world->getPlayerPtr().getCell()->getCell()->mRegion); if (mWeatherUpdateTime <= 0 || regionstr != mCurrentRegion) { mCurrentRegion = regionstr; mWeatherUpdateTime = mHoursBetweenWeatherChanges * 3600; std::string weatherType = "clear"; if (mRegionOverrides.find(regionstr) != mRegionOverrides.end()) { weatherType = mRegionOverrides[regionstr]; } else { // get weather probabilities for the current region const ESM::Region *region = world->getStore().get().search (regionstr); if (region != 0) { weatherType = nextWeather(region); } } setWeather(weatherType, instantly); } } } bool WeatherManager::isInStorm() const { return mIsStorm; } osg::Vec3f WeatherManager::getStormDirection() const { return mStormDirection; } void WeatherManager::advanceTime(double hours) { mTimePassed += hours*3600; } inline void WeatherManager::addWeather(const std::string& name, const MWWorld::Fallback& fallback, const std::string& ambientLoopSoundID, const std::string& particleEffect) { static const float fStromWindSpeed = mStore->get().find("fStromWindSpeed")->getFloat(); Weather weather(name, fallback, fStromWindSpeed, mRainSpeed, ambientLoopSoundID, particleEffect); std::string lower = name; lower[0] = tolower(lower[0]); mWeatherSettings.insert(std::make_pair(lower, weather)); } inline Weather& WeatherManager::findWeather(const std::string& name) { return mWeatherSettings.at(name); }