#ifndef OPENMW_COMPONENTS_DETOURNAVIGATOR_FINDSMOOTHPATH_H #define OPENMW_COMPONENTS_DETOURNAVIGATOR_FINDSMOOTHPATH_H #include "dtstatus.hpp" #include "exceptions.hpp" #include "flags.hpp" #include "settings.hpp" #include "settingsutils.hpp" #include "debug.hpp" #include "status.hpp" #include "areatype.hpp" #include #include #include #include #include #include #include #include class dtNavMesh; namespace DetourNavigator { struct Settings; inline bool inRange(const osg::Vec3f& v1, const osg::Vec3f& v2, const float r, const float h) { const auto d = v2 - v1; return (d.x() * d.x() + d.z() * d.z()) < r * r && std::abs(d.y()) < h; } std::vector fixupCorridor(const std::vector& path, const std::vector& visited); // This function checks if the path has a small U-turn, that is, // a polygon further in the path is adjacent to the first polygon // in the path. If that happens, a shortcut is taken. // This can happen if the target (T) location is at tile boundary, // and we're (S) approaching it parallel to the tile edge. // The choice at the vertex can be arbitrary, // +---+---+ // |:::|:::| // +-S-+-T-+ // |:::| | <-- the step can end up in here, resulting U-turn path. // +---+---+ std::vector fixupShortcuts(const std::vector& path, const dtNavMeshQuery& navQuery); struct SteerTarget { osg::Vec3f steerPos; unsigned char steerPosFlag; dtPolyRef steerPosRef; }; std::optional getSteerTarget(const dtNavMeshQuery& navQuery, const osg::Vec3f& startPos, const osg::Vec3f& endPos, const float minTargetDist, const std::vector& path); template class OutputTransformIterator { public: OutputTransformIterator(OutputIterator& impl, const Settings& settings) : mImpl(impl), mSettings(settings) { } OutputTransformIterator& operator *() { return *this; } OutputTransformIterator& operator ++() { ++mImpl.get(); return *this; } OutputTransformIterator operator ++(int) { const auto copy = *this; ++(*this); return copy; } OutputTransformIterator& operator =(const osg::Vec3f& value) { *mImpl.get() = fromNavMeshCoordinates(mSettings, value); return *this; } private: std::reference_wrapper mImpl; std::reference_wrapper mSettings; }; inline bool initNavMeshQuery(dtNavMeshQuery& value, const dtNavMesh& navMesh, const int maxNodes) { const auto status = value.init(&navMesh, maxNodes); return dtStatusSucceed(status); } struct MoveAlongSurfaceResult { osg::Vec3f mResultPos; std::vector mVisited; }; inline std::optional moveAlongSurface(const dtNavMeshQuery& navMeshQuery, const dtPolyRef startRef, const osg::Vec3f& startPos, const osg::Vec3f& endPos, const dtQueryFilter& filter, const std::size_t maxVisitedSize) { MoveAlongSurfaceResult result; result.mVisited.resize(maxVisitedSize); int visitedNumber = 0; const auto status = navMeshQuery.moveAlongSurface(startRef, startPos.ptr(), endPos.ptr(), &filter, result.mResultPos.ptr(), result.mVisited.data(), &visitedNumber, static_cast(maxVisitedSize)); if (!dtStatusSucceed(status)) return {}; assert(visitedNumber >= 0); assert(visitedNumber <= static_cast(maxVisitedSize)); result.mVisited.resize(static_cast(visitedNumber)); return {std::move(result)}; } inline std::optional> findPath(const dtNavMeshQuery& navMeshQuery, const dtPolyRef startRef, const dtPolyRef endRef, const osg::Vec3f& startPos, const osg::Vec3f& endPos, const dtQueryFilter& queryFilter, const std::size_t maxSize) { int pathLen = 0; std::vector result(maxSize); const auto status = navMeshQuery.findPath(startRef, endRef, startPos.ptr(), endPos.ptr(), &queryFilter, result.data(), &pathLen, static_cast(maxSize)); if (!dtStatusSucceed(status)) return {}; assert(pathLen >= 0); assert(static_cast(pathLen) <= maxSize); result.resize(static_cast(pathLen)); return {std::move(result)}; } inline std::optional getPolyHeight(const dtNavMeshQuery& navMeshQuery, const dtPolyRef ref, const osg::Vec3f& pos) { float result = 0.0f; const auto status = navMeshQuery.getPolyHeight(ref, pos.ptr(), &result); if (!dtStatusSucceed(status)) return {}; return result; } template Status makeSmoothPath(const dtNavMesh& navMesh, const dtNavMeshQuery& navMeshQuery, const dtQueryFilter& filter, const osg::Vec3f& start, const osg::Vec3f& end, const float stepSize, std::vector polygonPath, std::size_t maxSmoothPathSize, OutputIterator& out) { // Iterate over the path to find smooth path on the detail mesh surface. osg::Vec3f iterPos; navMeshQuery.closestPointOnPoly(polygonPath.front(), start.ptr(), iterPos.ptr(), nullptr); osg::Vec3f targetPos; navMeshQuery.closestPointOnPoly(polygonPath.back(), end.ptr(), targetPos.ptr(), nullptr); const float SLOP = 0.01f; *out++ = iterPos; std::size_t smoothPathSize = 1; // Move towards target a small advancement at a time until target reached or // when ran out of memory to store the path. while (!polygonPath.empty() && smoothPathSize < maxSmoothPathSize) { // Find location to steer towards. const auto steerTarget = getSteerTarget(navMeshQuery, iterPos, targetPos, SLOP, polygonPath); if (!steerTarget) break; const bool endOfPath = bool(steerTarget->steerPosFlag & DT_STRAIGHTPATH_END); const bool offMeshConnection = bool(steerTarget->steerPosFlag & DT_STRAIGHTPATH_OFFMESH_CONNECTION); // Find movement delta. const osg::Vec3f delta = steerTarget->steerPos - iterPos; float len = delta.length(); // If the steer target is end of path or off-mesh link, do not move past the location. if ((endOfPath || offMeshConnection) && len < stepSize) len = 1; else len = stepSize / len; const osg::Vec3f moveTgt = iterPos + delta * len; const auto result = moveAlongSurface(navMeshQuery, polygonPath.front(), iterPos, moveTgt, filter, 16); if (!result) return Status::MoveAlongSurfaceFailed; polygonPath = fixupCorridor(polygonPath, result->mVisited); polygonPath = fixupShortcuts(polygonPath, navMeshQuery); float h = 0; navMeshQuery.getPolyHeight(polygonPath.front(), result->mResultPos.ptr(), &h); iterPos = result->mResultPos; iterPos.y() = h; // Handle end of path and off-mesh links when close enough. if (endOfPath && inRange(iterPos, steerTarget->steerPos, SLOP, 1.0f)) { // Reached end of path. iterPos = targetPos; *out++ = iterPos; ++smoothPathSize; break; } else if (offMeshConnection && inRange(iterPos, steerTarget->steerPos, SLOP, 1.0f)) { // Advance the path up to and over the off-mesh connection. dtPolyRef prevRef = 0; dtPolyRef polyRef = polygonPath.front(); std::size_t npos = 0; while (npos < polygonPath.size() && polyRef != steerTarget->steerPosRef) { prevRef = polyRef; polyRef = polygonPath[npos]; ++npos; } std::copy(polygonPath.begin() + std::ptrdiff_t(npos), polygonPath.end(), polygonPath.begin()); polygonPath.resize(polygonPath.size() - npos); // Reached off-mesh connection. osg::Vec3f startPos; osg::Vec3f endPos; // Handle the connection. if (dtStatusSucceed(navMesh.getOffMeshConnectionPolyEndPoints(prevRef, polyRef, startPos.ptr(), endPos.ptr()))) { *out++ = startPos; ++smoothPathSize; // Hack to make the dotted path not visible during off-mesh connection. if (smoothPathSize & 1) { *out++ = startPos; ++smoothPathSize; } // Move position at the other side of the off-mesh link. iterPos = endPos; const auto height = getPolyHeight(navMeshQuery, polygonPath.front(), iterPos); if (!height) return Status::GetPolyHeightFailed; iterPos.y() = *height; } } // Store results. *out++ = iterPos; ++smoothPathSize; } return Status::Success; } template Status findSmoothPath(const dtNavMesh& navMesh, const osg::Vec3f& halfExtents, const float stepSize, const osg::Vec3f& start, const osg::Vec3f& end, const Flags includeFlags, const AreaCosts& areaCosts, const Settings& settings, OutputIterator& out) { dtNavMeshQuery navMeshQuery; if (!initNavMeshQuery(navMeshQuery, navMesh, settings.mMaxNavMeshQueryNodes)) return Status::InitNavMeshQueryFailed; dtQueryFilter queryFilter; queryFilter.setIncludeFlags(includeFlags); queryFilter.setAreaCost(AreaType_water, areaCosts.mWater); queryFilter.setAreaCost(AreaType_door, areaCosts.mDoor); queryFilter.setAreaCost(AreaType_pathgrid, areaCosts.mPathgrid); queryFilter.setAreaCost(AreaType_ground, areaCosts.mGround); dtPolyRef startRef = 0; for (int i = 0; i < 3; ++i) { const auto status = navMeshQuery.findNearestPoly(start.ptr(), (halfExtents * (1 << i)).ptr(), &queryFilter, &startRef, nullptr); if (!dtStatusFailed(status) && startRef != 0) break; } if (startRef == 0) return Status::StartPolygonNotFound; dtPolyRef endRef = 0; for (int i = 0; i < 3; ++i) { const auto status = navMeshQuery.findNearestPoly(end.ptr(), (halfExtents * (1 << i)).ptr(), &queryFilter, &endRef, nullptr); if (!dtStatusFailed(status) && endRef != 0) break; } if (endRef == 0) return Status::EndPolygonNotFound; const auto polygonPath = findPath(navMeshQuery, startRef, endRef, start, end, queryFilter, settings.mMaxPolygonPathSize); if (!polygonPath) return Status::FindPathOverPolygonsFailed; if (polygonPath->empty() || polygonPath->back() != endRef) return Status::Success; auto outTransform = OutputTransformIterator(out, settings); return makeSmoothPath(navMesh, navMeshQuery, queryFilter, start, end, stepSize, std::move(*polygonPath), settings.mMaxSmoothPathSize, outTransform); } } #endif