#include "movementsolver.hpp" #include #include #include #include #include #include "../mwbase/world.hpp" #include "../mwbase/environment.hpp" #include "../mwworld/class.hpp" #include "../mwworld/esmstore.hpp" #include "../mwworld/refdata.hpp" #include "actor.hpp" #include "collisiontype.hpp" #include "constants.hpp" #include "contacttestwrapper.h" #include "physicssystem.hpp" #include "stepper.hpp" #include "trace.h" #include namespace MWPhysics { static bool isActor(const btCollisionObject *obj) { assert(obj); return obj->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor; } class ContactCollectionCallback : public btCollisionWorld::ContactResultCallback { public: ContactCollectionCallback(const btCollisionObject * me, osg::Vec3f velocity) : mMe(me) { m_collisionFilterGroup = me->getBroadphaseHandle()->m_collisionFilterGroup; m_collisionFilterMask = me->getBroadphaseHandle()->m_collisionFilterMask & ~CollisionType_Projectile; mVelocity = Misc::Convert::toBullet(velocity); } btScalar addSingleResult(btManifoldPoint & contact, const btCollisionObjectWrapper * colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper * colObj1Wrap, int partId1, int index1) override { if (isActor(colObj0Wrap->getCollisionObject()) && isActor(colObj1Wrap->getCollisionObject())) return 0.0; // ignore overlap if we're moving in the same direction as it would push us out (don't change this to >=, that would break detection when not moving) if (contact.m_normalWorldOnB.dot(mVelocity) > 0.0) return 0.0; auto delta = contact.m_normalWorldOnB * -contact.m_distance1; mContactSum += delta; mMaxX = std::max(std::abs(delta.x()), mMaxX); mMaxY = std::max(std::abs(delta.y()), mMaxY); mMaxZ = std::max(std::abs(delta.z()), mMaxZ); if (contact.m_distance1 < mDistance) { mDistance = contact.m_distance1; mNormal = contact.m_normalWorldOnB; mDelta = delta; return mDistance; } else { return 0.0; } } btScalar mMaxX = 0.0; btScalar mMaxY = 0.0; btScalar mMaxZ = 0.0; btVector3 mContactSum{0.0, 0.0, 0.0}; btVector3 mNormal{0.0, 0.0, 0.0}; // points towards "me" btVector3 mDelta{0.0, 0.0, 0.0}; // points towards "me" btScalar mDistance = 0.0; // negative or zero protected: btVector3 mVelocity; const btCollisionObject * mMe; }; osg::Vec3f MovementSolver::traceDown(const MWWorld::Ptr &ptr, const osg::Vec3f& position, Actor* actor, btCollisionWorld* collisionWorld, float maxHeight) { osg::Vec3f offset = actor->getCollisionObjectPosition() - ptr.getRefData().getPosition().asVec3(); ActorTracer tracer; tracer.findGround(actor, position + offset, position + offset - osg::Vec3f(0,0,maxHeight), collisionWorld); if (tracer.mFraction >= 1.0f) { actor->setOnGround(false); return position; } actor->setOnGround(true); // Check if we actually found a valid spawn point (use an infinitely thin ray this time). // Required for some broken door destinations in Morrowind.esm, where the spawn point // intersects with other geometry if the actor's base is taken into account btVector3 from = Misc::Convert::toBullet(position); btVector3 to = from - btVector3(0,0,maxHeight); btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to); resultCallback1.m_collisionFilterGroup = 0xff; resultCallback1.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap; collisionWorld->rayTest(from, to, resultCallback1); if (resultCallback1.hasHit() && ((Misc::Convert::toOsg(resultCallback1.m_hitPointWorld) - tracer.mEndPos + offset).length2() > 35*35 || !isWalkableSlope(tracer.mPlaneNormal))) { actor->setOnSlope(!isWalkableSlope(resultCallback1.m_hitNormalWorld)); return Misc::Convert::toOsg(resultCallback1.m_hitPointWorld) + osg::Vec3f(0.f, 0.f, sGroundOffset); } actor->setOnSlope(!isWalkableSlope(tracer.mPlaneNormal)); return tracer.mEndPos-offset + osg::Vec3f(0.f, 0.f, sGroundOffset); } void MovementSolver::move(ActorFrameData& actor, float time, const btCollisionWorld* collisionWorld, WorldFrameData& worldData) { // Reset per-frame data actor.mWalkingOnWater = false; // Anything to collide with? if(actor.mSkipCollisionDetection) { actor.mPosition += (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1)) ) * actor.mMovement * time; return; } // Adjust for collision mesh offset relative to actor's "location" // (doTrace doesn't take local/interior collision shape translation into account, so we have to do it on our own) // for compatibility with vanilla assets, we have to derive this from the vertical half extent instead of from internal hull translation // if not for this hack, the "correct" collision hull position would be physicActor->getScaledMeshTranslation() actor.mPosition.z() += actor.mHalfExtentsZ; // vanilla-accurate float swimlevel = actor.mSwimLevel + actor.mHalfExtentsZ; ActorTracer tracer; osg::Vec3f velocity; // Dead and paralyzed actors underwater will float to the surface, // if the CharacterController tells us to do so if (actor.mMovement.z() > 0 && actor.mInert && actor.mPosition.z() < swimlevel) { velocity = osg::Vec3f(0,0,1) * 25; } else if (actor.mPosition.z() < swimlevel || actor.mFlying) { velocity = (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; } else { velocity = (osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; if ((velocity.z() > 0.f && actor.mIsOnGround && !actor.mIsOnSlope) || (velocity.z() > 0.f && velocity.z() + actor.mInertia.z() <= -velocity.z() && actor.mIsOnSlope)) actor.mInertia = velocity; else if (!actor.mIsOnGround || actor.mIsOnSlope) velocity = velocity + actor.mInertia; } // Now that we have the effective movement vector, apply wind forces to it if (worldData.mIsInStorm && velocity.length() > 0) { osg::Vec3f stormDirection = worldData.mStormDirection; float angleDegrees = osg::RadiansToDegrees(std::acos(stormDirection * velocity / (stormDirection.length() * velocity.length()))); static const float fStromWalkMult = MWBase::Environment::get().getWorld()->getStore().get().find("fStromWalkMult")->mValue.getFloat(); velocity *= 1.f-(fStromWalkMult * (angleDegrees/180.f)); } Stepper stepper(collisionWorld, actor.mCollisionObject); osg::Vec3f origVelocity = velocity; osg::Vec3f newPosition = actor.mPosition; /* * A loop to find newPosition using tracer, if successful different from the starting position. * nextpos is the local variable used to find potential newPosition, using velocity and remainingTime * The initial velocity was set earlier (see above). */ float remainingTime = time; int numTimesSlid = 0; osg::Vec3f lastSlideNormal(0,0,1); osg::Vec3f lastSlideNormalFallback(0,0,1); bool forceGroundTest = false; for (int iterations = 0; iterations < sMaxIterations && remainingTime > 0.0001f; ++iterations) { osg::Vec3f nextpos = newPosition + velocity * remainingTime; bool underwater = newPosition.z() < swimlevel; // If not able to fly, don't allow to swim up into the air if(!actor.mFlying && nextpos.z() > swimlevel && underwater) { const osg::Vec3f down(0,0,-1); velocity = reject(velocity, down); // NOTE: remainingTime is unchanged before the loop continues continue; // velocity updated, calculate nextpos again } if((newPosition - nextpos).length2() > 0.0001) { // trace to where character would go if there were no obstructions tracer.doTrace(actor.mCollisionObject, newPosition, nextpos, collisionWorld); // check for obstructions if(tracer.mFraction >= 1.0f) { newPosition = tracer.mEndPos; // ok to move, so set newPosition break; } } else { // The current position and next position are nearly the same, so just exit. // Note: Bullet can trigger an assert in debug modes if the positions // are the same, since that causes it to attempt to normalize a zero // length vector (which can also happen with nearly identical vectors, since // precision can be lost due to any math Bullet does internally). Since we // aren't performing any collision detection, we want to reject the next // position, so that we don't slowly move inside another object. break; } bool seenGround = !actor.mFlying && !underwater && ((actor.mIsOnGround && !actor.mIsOnSlope) || isWalkableSlope(tracer.mPlaneNormal)); // We hit something. Check if we can step up. float hitHeight = tracer.mHitPoint.z() - tracer.mEndPos.z() + actor.mHalfExtentsZ; osg::Vec3f oldPosition = newPosition; bool usedStepLogic = false; if (hitHeight < sStepSizeUp && !isActor(tracer.mHitObject)) { // Try to step up onto it. // NOTE: this modifies newPosition and velocity on its own if successful usedStepLogic = stepper.step(newPosition, velocity, remainingTime, seenGround, iterations == 0); } if (usedStepLogic) { if (actor.mIsAquatic && newPosition.z() + actor.mHalfExtentsZ > actor.mWaterlevel) newPosition = oldPosition; else if(!actor.mFlying && actor.mPosition.z() >= swimlevel) forceGroundTest = true; } else { // Can't step up, so slide against what we ran into remainingTime *= (1.0f-tracer.mFraction); auto planeNormal = tracer.mPlaneNormal; // If we touched the ground this frame, and whatever we ran into is a wall of some sort, // pretend that its collision normal is pointing horizontally // (fixes snagging on slightly downward-facing walls, and crawling up the bases of very steep walls because of the collision margin) if (seenGround && !isWalkableSlope(planeNormal) && planeNormal.z() != 0) { planeNormal.z() = 0; planeNormal.normalize(); } // Move up to what we ran into (with a bit of a collision margin) if ((newPosition-tracer.mEndPos).length2() > sCollisionMargin*sCollisionMargin) { auto direction = velocity; direction.normalize(); newPosition = tracer.mEndPos; newPosition -= direction*sCollisionMargin; } osg::Vec3f newVelocity = (velocity * planeNormal <= 0.0) ? reject(velocity, planeNormal) : velocity; bool usedSeamLogic = false; // check for the current and previous collision planes forming an acute angle; slide along the seam if they do if(numTimesSlid > 0) { auto dotA = lastSlideNormal * planeNormal; auto dotB = lastSlideNormalFallback * planeNormal; if(numTimesSlid <= 1) // ignore fallback normal if this is only the first or second slide dotB = 1.0; if(dotA <= 0.0 || dotB <= 0.0) { osg::Vec3f bestNormal = lastSlideNormal; // use previous-to-previous collision plane if it's acute with current plane but actual previous plane isn't if(dotB < dotA) { bestNormal = lastSlideNormalFallback; lastSlideNormal = lastSlideNormalFallback; } auto constraintVector = bestNormal ^ planeNormal; // cross product if(constraintVector.length2() > 0) // only if it's not zero length { constraintVector.normalize(); newVelocity = project(velocity, constraintVector); // version of surface rejection for acute crevices/seams auto averageNormal = bestNormal + planeNormal; averageNormal.normalize(); tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + averageNormal*(sCollisionMargin*2.0), collisionWorld); newPosition = (newPosition + tracer.mEndPos)/2.0; usedSeamLogic = true; } } } // otherwise just keep the normal vector rejection // if this isn't the first iteration, or if the first iteration is also the last iteration, // move away from the collision plane slightly, if possible // this reduces getting stuck in some concave geometry, like the gaps above the railings in some ald'ruhn buildings // this is different from the normal collision margin, because the normal collision margin is along the movement path, // but this is along the collision normal if(!usedSeamLogic && (iterations > 0 || remainingTime < 0.01f)) { tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + planeNormal*(sCollisionMargin*2.0), collisionWorld); newPosition = (newPosition + tracer.mEndPos)/2.0; } // Do not allow sliding up steep slopes if there is gravity. if (newPosition.z() >= swimlevel && !actor.mFlying && !isWalkableSlope(planeNormal)) newVelocity.z() = std::min(newVelocity.z(), velocity.z()); if (newVelocity * origVelocity <= 0.0f) break; numTimesSlid += 1; lastSlideNormalFallback = lastSlideNormal; lastSlideNormal = planeNormal; velocity = newVelocity; } } bool isOnGround = false; bool isOnSlope = false; if (forceGroundTest || (actor.mInertia.z() <= 0.f && newPosition.z() >= swimlevel)) { osg::Vec3f from = newPosition; auto dropDistance = 2*sGroundOffset + (actor.mIsOnGround ? sStepSizeDown : 0); osg::Vec3f to = newPosition - osg::Vec3f(0,0,dropDistance); tracer.doTrace(actor.mCollisionObject, from, to, collisionWorld); if(tracer.mFraction < 1.0f) { if (!isActor(tracer.mHitObject)) { isOnGround = true; isOnSlope = !isWalkableSlope(tracer.mPlaneNormal); actor.mStandingOn = tracer.mHitObject; if (actor.mStandingOn->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Water) actor.mWalkingOnWater = true; if (!actor.mFlying && !isOnSlope) { if (tracer.mFraction*dropDistance > sGroundOffset) newPosition.z() = tracer.mEndPos.z() + sGroundOffset; else { newPosition.z() = tracer.mEndPos.z(); tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + osg::Vec3f(0, 0, 2*sGroundOffset), collisionWorld); newPosition = (newPosition+tracer.mEndPos)/2.0; } } } else { // Vanilla allows actors to float on top of other actors. Do not push them off. if (!actor.mFlying && isWalkableSlope(tracer.mPlaneNormal) && tracer.mEndPos.z()+sGroundOffset <= newPosition.z()) newPosition.z() = tracer.mEndPos.z() + sGroundOffset; isOnGround = false; } } // forcibly treat stuck actors as if they're on flat ground because buggy collisions when inside of things can/will break ground detection if(actor.mStuckFrames > 0) { isOnGround = true; isOnSlope = false; } } if((isOnGround && !isOnSlope) || newPosition.z() < swimlevel || actor.mFlying) actor.mInertia = osg::Vec3f(0.f, 0.f, 0.f); else { actor.mInertia.z() -= time * Constants::GravityConst * Constants::UnitsPerMeter; if (actor.mInertia.z() < 0) actor.mInertia.z() *= actor.mSlowFall; if (actor.mSlowFall < 1.f) { actor.mInertia.x() *= actor.mSlowFall; actor.mInertia.y() *= actor.mSlowFall; } } actor.mIsOnGround = isOnGround; actor.mIsOnSlope = isOnSlope; actor.mPosition = newPosition; // remove what was added earlier in compensating for doTrace not taking interior transformation into account actor.mPosition.z() -= actor.mHalfExtentsZ; // vanilla-accurate } btVector3 addMarginToDelta(btVector3 delta) { if(delta.length2() == 0.0) return delta; return delta + delta.normalized() * sCollisionMargin; } void MovementSolver::unstuck(ActorFrameData& actor, const btCollisionWorld* collisionWorld) { if(actor.mSkipCollisionDetection) // noclipping/tcl return; auto tempPosition = actor.mPosition; if(actor.mStuckFrames >= 10) { if((actor.mLastStuckPosition - actor.mPosition).length2() < 100) return; else { actor.mStuckFrames = 0; actor.mLastStuckPosition = {0, 0, 0}; } } // use vanilla-accurate collision hull position hack (do same hitbox offset hack as movement solver) // if vanilla compatibility didn't matter, the "correct" collision hull position would be physicActor->getScaledMeshTranslation() const auto verticalHalfExtent = osg::Vec3f(0.0, 0.0, actor.mHalfExtentsZ); // use a 3d approximation of the movement vector to better judge player intent auto velocity = (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; // try to pop outside of the world before doing anything else if we're inside of it if (!actor.mIsOnGround || actor.mIsOnSlope) velocity += actor.mInertia; // because of the internal collision box offset hack, and the fact that we're moving the collision box manually, // we need to replicate part of the collision box's transform process from scratch osg::Vec3f refPosition = tempPosition + verticalHalfExtent; osg::Vec3f goodPosition = refPosition; const btTransform oldTransform = actor.mCollisionObject->getWorldTransform(); btTransform newTransform = oldTransform; auto gatherContacts = [&](btVector3 newOffset) -> ContactCollectionCallback { goodPosition = refPosition + Misc::Convert::toOsg(addMarginToDelta(newOffset)); newTransform.setOrigin(Misc::Convert::toBullet(goodPosition)); actor.mCollisionObject->setWorldTransform(newTransform); ContactCollectionCallback callback{actor.mCollisionObject, velocity}; ContactTestWrapper::contactTest(const_cast(collisionWorld), actor.mCollisionObject, callback); return callback; }; // check whether we're inside the world with our collision box with manually-derived offset auto contactCallback = gatherContacts({0.0, 0.0, 0.0}); if(contactCallback.mDistance < -sAllowedPenetration) { ++actor.mStuckFrames; actor.mLastStuckPosition = actor.mPosition; // we are; try moving it out of the world auto positionDelta = contactCallback.mContactSum; // limit rejection delta to the largest known individual rejections if(std::abs(positionDelta.x()) > contactCallback.mMaxX) positionDelta *= contactCallback.mMaxX / std::abs(positionDelta.x()); if(std::abs(positionDelta.y()) > contactCallback.mMaxY) positionDelta *= contactCallback.mMaxY / std::abs(positionDelta.y()); if(std::abs(positionDelta.z()) > contactCallback.mMaxZ) positionDelta *= contactCallback.mMaxZ / std::abs(positionDelta.z()); auto contactCallback2 = gatherContacts(positionDelta); // successfully moved further out from contact (does not have to be in open space, just less inside of things) if(contactCallback2.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; // try again but only upwards (fixes some bad coc floors) else { // upwards-only offset auto contactCallback3 = gatherContacts({0.0, 0.0, std::abs(positionDelta.z())}); // success if(contactCallback3.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; else // try again but fixed distance up { auto contactCallback4 = gatherContacts({0.0, 0.0, 10.0}); // success if(contactCallback4.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; } } } else { actor.mStuckFrames = 0; actor.mLastStuckPosition = {0, 0, 0}; } actor.mCollisionObject->setWorldTransform(oldTransform); actor.mPosition = tempPosition; } }