#include "buffercache.hpp" #include #include "defs.hpp" namespace Terrain { Ogre::HardwareVertexBufferSharedPtr BufferCache::getUVBuffer() { if (mUvBufferMap.find(mNumVerts) != mUvBufferMap.end()) { return mUvBufferMap[mNumVerts]; } int vertexCount = mNumVerts * mNumVerts; std::vector uvs; uvs.reserve(vertexCount*2); for (unsigned int col = 0; col < mNumVerts; ++col) { for (unsigned int row = 0; row < mNumVerts; ++row) { uvs.push_back(col / static_cast(mNumVerts-1)); // U uvs.push_back(row / static_cast(mNumVerts-1)); // V } } Ogre::HardwareBufferManager* mgr = Ogre::HardwareBufferManager::getSingletonPtr(); Ogre::HardwareVertexBufferSharedPtr buffer = mgr->createVertexBuffer( Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT2), vertexCount, Ogre::HardwareBuffer::HBU_STATIC); buffer->writeData(0, buffer->getSizeInBytes(), &uvs[0], true); mUvBufferMap[mNumVerts] = buffer; return buffer; } Ogre::HardwareIndexBufferSharedPtr BufferCache::getIndexBuffer(int flags) { unsigned int verts = mNumVerts; if (mIndexBufferMap.find(flags) != mIndexBufferMap.end()) { return mIndexBufferMap[flags]; } // LOD level n means every 2^n-th vertex is kept size_t lodLevel = (flags >> (4*4)); size_t lodDeltas[4]; for (int i=0; i<4; ++i) lodDeltas[i] = (flags >> (4*i)) & (0xf); bool anyDeltas = (lodDeltas[North] || lodDeltas[South] || lodDeltas[West] || lodDeltas[East]); size_t increment = 1 << lodLevel; assert(increment < verts); std::vector indices; indices.reserve((verts-1)*(verts-1)*2*3 / increment); size_t rowStart = 0, colStart = 0, rowEnd = verts-1, colEnd = verts-1; // If any edge needs stitching we'll skip all edges at this point, // mainly because stitching one edge would have an effect on corners and on the adjacent edges if (anyDeltas) { colStart += increment; colEnd -= increment; rowEnd -= increment; rowStart += increment; } for (size_t row = rowStart; row < rowEnd; row += increment) { for (size_t col = colStart; col < colEnd; col += increment) { indices.push_back(verts*col+row); indices.push_back(verts*(col+increment)+row+increment); indices.push_back(verts*col+row+increment); indices.push_back(verts*col+row); indices.push_back(verts*(col+increment)+row); indices.push_back(verts*(col+increment)+row+increment); } } size_t innerStep = increment; if (anyDeltas) { // Now configure LOD transitions at the edges - this is pretty tedious, // and some very long and boring code, but it works great // South size_t row = 0; size_t outerStep = 1 << (lodDeltas[South] + lodLevel); for (size_t col = 0; col < verts-1; col += outerStep) { indices.push_back(verts*col+row); indices.push_back(verts*(col+outerStep)+row); // Make sure not to touch the right edge if (col+outerStep == verts-1) indices.push_back(verts*(col+outerStep-innerStep)+row+innerStep); else indices.push_back(verts*(col+outerStep)+row+innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col+i == 0 || col+i == verts-1-innerStep) continue; indices.push_back(verts*(col)+row); indices.push_back(verts*(col+i+innerStep)+row+innerStep); indices.push_back(verts*(col+i)+row+innerStep); } } // North row = verts-1; outerStep = 1 << (lodDeltas[North] + lodLevel); for (size_t col = 0; col < verts-1; col += outerStep) { indices.push_back(verts*(col+outerStep)+row); indices.push_back(verts*col+row); // Make sure not to touch the left edge if (col == 0) indices.push_back(verts*(col+innerStep)+row-innerStep); else indices.push_back(verts*col+row-innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col+i == 0 || col+i == verts-1-innerStep) continue; indices.push_back(verts*(col+i)+row-innerStep); indices.push_back(verts*(col+i+innerStep)+row-innerStep); indices.push_back(verts*(col+outerStep)+row); } } // West size_t col = 0; outerStep = 1 << (lodDeltas[West] + lodLevel); for (size_t row = 0; row < verts-1; row += outerStep) { indices.push_back(verts*col+row+outerStep); indices.push_back(verts*col+row); // Make sure not to touch the top edge if (row+outerStep == verts-1) indices.push_back(verts*(col+innerStep)+row+outerStep-innerStep); else indices.push_back(verts*(col+innerStep)+row+outerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row+i == 0 || row+i == verts-1-innerStep) continue; indices.push_back(verts*col+row); indices.push_back(verts*(col+innerStep)+row+i); indices.push_back(verts*(col+innerStep)+row+i+innerStep); } } // East col = verts-1; outerStep = 1 << (lodDeltas[East] + lodLevel); for (size_t row = 0; row < verts-1; row += outerStep) { indices.push_back(verts*col+row); indices.push_back(verts*col+row+outerStep); // Make sure not to touch the bottom edge if (row == 0) indices.push_back(verts*(col-innerStep)+row+innerStep); else indices.push_back(verts*(col-innerStep)+row); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row+i == 0 || row+i == verts-1-innerStep) continue; indices.push_back(verts*col+row+outerStep); indices.push_back(verts*(col-innerStep)+row+i+innerStep); indices.push_back(verts*(col-innerStep)+row+i); } } } Ogre::HardwareBufferManager* mgr = Ogre::HardwareBufferManager::getSingletonPtr(); Ogre::HardwareIndexBufferSharedPtr buffer = mgr->createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT, indices.size(), Ogre::HardwareBuffer::HBU_STATIC); buffer->writeData(0, buffer->getSizeInBytes(), &indices[0], true); mIndexBufferMap[flags] = buffer; return buffer; } }