#version 120 #if @useUBO #extension GL_ARB_uniform_buffer_object : require #endif #if @useGPUShader4 #extension GL_EXT_gpu_shader4: require #endif #include "openmw_fragment.h.glsl" #define REFRACTION @refraction_enabled #define RAIN_RIPPLE_DETAIL @rain_ripple_detail // Inspired by Blender GLSL Water by martinsh ( https://devlog-martinsh.blogspot.de/2012/07/waterundewater-shader-wip.html ) // tweakables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- const float VISIBILITY = 2500.0; const float BIG_WAVES_X = 0.1; // strength of big waves const float BIG_WAVES_Y = 0.1; const float MID_WAVES_X = 0.1; // strength of middle sized waves const float MID_WAVES_Y = 0.1; const float MID_WAVES_RAIN_X = 0.2; const float MID_WAVES_RAIN_Y = 0.2; const float SMALL_WAVES_X = 0.1; // strength of small waves const float SMALL_WAVES_Y = 0.1; const float SMALL_WAVES_RAIN_X = 0.3; const float SMALL_WAVES_RAIN_Y = 0.3; const float WAVE_CHOPPYNESS = 0.05; // wave choppyness const float WAVE_SCALE = 75.0; // overall wave scale const float BUMP = 0.5; // overall water surface bumpiness const float BUMP_RAIN = 2.5; const float REFL_BUMP = 0.10; // reflection distortion amount const float REFR_BUMP = 0.07; // refraction distortion amount const float SCATTER_AMOUNT = 0.3; // amount of sunlight scattering const vec3 SCATTER_COLOUR = vec3(0.0,1.0,0.95); // colour of sunlight scattering const vec3 SUN_EXT = vec3(0.45, 0.55, 0.68); //sunlight extinction const float SPEC_HARDNESS = 256.0; // specular highlights hardness const float BUMP_SUPPRESS_DEPTH = 300.0; // at what water depth bumpmap will be suppressed for reflections and refractions (prevents artifacts at shores) const vec2 WIND_DIR = vec2(0.5f, -0.8f); const float WIND_SPEED = 0.2f; const vec3 WATER_COLOR = vec3(0.090195, 0.115685, 0.12745); const float WOBBLY_SHORE_FADE_DISTANCE = 6200.0; // fade out wobbly shores to mask precision errors, the effect is almost impossible to see at a distance // ---------------- rain ripples related stuff --------------------- const float RAIN_RIPPLE_GAPS = 10.0; const float RAIN_RIPPLE_RADIUS = 0.2; float scramble(float x, float z) { return fract(pow(fract(x)*3.0+1.0, z)); } vec2 randOffset(vec2 c, float time) { time = fract(time/1000.0); c = vec2(c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2, c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7); c.x *= scramble(scramble(time + c.x/1000.0, 4.0), 3.0) + 1.0; c.y *= scramble(scramble(time + c.y/1000.0, 3.5), 3.0) + 1.0; return fract(c); } float randPhase(vec2 c) { return fract((c.x * c.y) / (c.x + c.y + 0.1)); } float blip(float x) { x = max(0.0, 1.0-x*x); return x*x*x; } float blipDerivative(float x) { x = clamp(x, -1.0, 1.0); float n = x*x-1.0; return -6.0*x*n*n; } const float RAIN_RING_TIME_OFFSET = 1.0/6.0; vec4 circle(vec2 coords, vec2 corner, float adjusted_time) { vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(corner, floor(adjusted_time)) - 1.0); float phase = fract(adjusted_time); vec2 toCenter = coords - center; float r = RAIN_RIPPLE_RADIUS; float d = length(toCenter); float ringfollower = (phase-d/r)/RAIN_RING_TIME_OFFSET-1.0; // -1.0 ~ +1.0 cover the breadth of the ripple's ring #if RAIN_RIPPLE_DETAIL > 0 // normal mapped ripples if(ringfollower < -1.0 || ringfollower > 1.0) return vec4(0.0); if(d > 1.0) // normalize center direction vector, but not for near-center ripples toCenter /= d; float height = blip(ringfollower*2.0+0.5); // brighten up outer edge of ring; for fake specularity float range_limit = blip(min(0.0, ringfollower)); float energy = 1.0-phase; vec2 normal2d = -toCenter*blipDerivative(ringfollower)*5.0; vec3 normal = vec3(normal2d, 0.5); vec4 ret = vec4(normal, height); ret.xyw *= energy*energy; // do energy adjustment here rather than later, so that we can use the w component for fake specularity ret.xyz = normalize(ret.xyz) * energy*range_limit; ret.z *= range_limit; return ret; #else // ring-only ripples if(ringfollower < -1.0 || ringfollower > 0.5) return vec4(0.0); float energy = 1.0-phase; float height = blip(ringfollower*2.0+0.5)*energy*energy; // fake specularity return vec4(0.0, 0.0, 0.0, height); #endif } vec4 rain(vec2 uv, float time) { uv *= RAIN_RIPPLE_GAPS; vec2 f_part = fract(uv); vec2 i_part = floor(uv); float adjusted_time = time * 1.2 + randPhase(i_part); #if RAIN_RIPPLE_DETAIL > 0 vec4 a = circle(f_part, i_part, adjusted_time); vec4 b = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET); vec4 c = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*2.0); vec4 d = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*3.0); vec4 ret; ret.xy = a.xy - b.xy/2.0 + c.xy/4.0 - d.xy/8.0; // z should always point up ret.z = a.z + b.z /2.0 + c.z /4.0 + d.z /8.0; //ret.xyz *= 1.5; // fake specularity looks weird if we use every single ring, also if the inner rings are too bright ret.w = (a.w + c.w /8.0)*1.5; return ret; #else return circle(f_part, i_part, adjusted_time) * 1.5; #endif } vec2 complex_mult(vec2 a, vec2 b) { return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x); } vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and fake specularity in w { return rain(uv, time) + rain(complex_mult(uv, vec2(0.4, 0.7)) + vec2(1.2, 3.0),time) #if RAIN_RIPPLE_DETAIL == 2 + rain(uv * 0.75 + vec2( 3.7,18.9),time) + rain(uv * 0.9 + vec2( 5.7,30.1),time) + rain(uv * 1.0 + vec2(10.5 ,5.7),time) #endif ; } // -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta) { float c = abs(dot(Incoming, Normal)); float g = eta * eta - 1.0 + c * c; float result; if(g > 0.0) { g = sqrt(g); float A =(g - c)/(g + c); float B =(c *(g + c)- 1.0)/(c *(g - c)+ 1.0); result = 0.5 * A * A *(1.0 + B * B); } else result = 1.0; /* TIR (no refracted component) */ return result; } vec2 normalCoords(vec2 uv, float scale, float speed, float time, float timer1, float timer2, vec3 previousNormal) { return uv * (WAVE_SCALE * scale) + WIND_DIR * time * (WIND_SPEED * speed) -(previousNormal.xy/previousNormal.zz) * WAVE_CHOPPYNESS + vec2(time * timer1,time * timer2); } varying vec4 position; varying float linearDepth; uniform sampler2D normalMap; uniform float osg_SimulationTime; uniform float near; uniform vec3 nodePosition; uniform float rainIntensity; uniform vec2 screenRes; #define PER_PIXEL_LIGHTING 0 #include "shadows_fragment.glsl" #include "lighting.glsl" #include "fog.glsl" float frustumDepth; float linearizeDepth(float depth) { #if @reverseZ depth = 1.0 - depth; #endif float z_n = 2.0 * depth - 1.0; depth = 2.0 * near * far / (far + near - z_n * frustumDepth); return depth; } void main(void) { frustumDepth = abs(far - near); vec3 worldPos = position.xyz + nodePosition.xyz; vec2 UV = worldPos.xy / (8192.0*5.0) * 3.0; UV.y *= -1.0; float shadow = unshadowedLightRatio(linearDepth); vec2 screenCoords = gl_FragCoord.xy / screenRes; #define waterTimer osg_SimulationTime vec3 normal0 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.05, 0.04, waterTimer, -0.015, -0.005, vec3(0.0,0.0,0.0))).rgb - 1.0; vec3 normal1 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.1, 0.08, waterTimer, 0.02, 0.015, normal0)).rgb - 1.0; vec3 normal2 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.25, 0.07, waterTimer, -0.04, -0.03, normal1)).rgb - 1.0; vec3 normal3 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.5, 0.09, waterTimer, 0.03, 0.04, normal2)).rgb - 1.0; vec3 normal4 = 2.0 * texture2D(normalMap,normalCoords(UV, 1.0, 0.4, waterTimer, -0.02, 0.1, normal3)).rgb - 1.0; vec3 normal5 = 2.0 * texture2D(normalMap,normalCoords(UV, 2.0, 0.7, waterTimer, 0.1, -0.06, normal4)).rgb - 1.0; vec4 rainRipple; if (rainIntensity > 0.01) rainRipple = rainCombined(position.xy/1000.0, waterTimer) * clamp(rainIntensity, 0.0, 1.0); else rainRipple = vec4(0.0); vec3 rippleAdd = rainRipple.xyz * 10.0; vec2 bigWaves = vec2(BIG_WAVES_X,BIG_WAVES_Y); vec2 midWaves = mix(vec2(MID_WAVES_X,MID_WAVES_Y),vec2(MID_WAVES_RAIN_X,MID_WAVES_RAIN_Y),rainIntensity); vec2 smallWaves = mix(vec2(SMALL_WAVES_X,SMALL_WAVES_Y),vec2(SMALL_WAVES_RAIN_X,SMALL_WAVES_RAIN_Y),rainIntensity); float bump = mix(BUMP,BUMP_RAIN,rainIntensity); vec3 normal = (normal0 * bigWaves.x + normal1 * bigWaves.y + normal2 * midWaves.x + normal3 * midWaves.y + normal4 * smallWaves.x + normal5 * smallWaves.y + rippleAdd); normal = normalize(vec3(-normal.x * bump, -normal.y * bump, normal.z)); vec3 lVec = normalize((gl_ModelViewMatrixInverse * vec4(lcalcPosition(0).xyz, 0.0)).xyz); vec3 cameraPos = (gl_ModelViewMatrixInverse * vec4(0,0,0,1)).xyz; vec3 vVec = normalize(position.xyz - cameraPos.xyz); float sunFade = length(gl_LightModel.ambient.xyz); // fresnel float ior = (cameraPos.z>0.0)?(1.333/1.0):(1.0/1.333); // air to water; water to air float fresnel = clamp(fresnel_dielectric(vVec, normal, ior), 0.0, 1.0); float radialise = 1.0; #if @radialFog float radialDepth = distance(position.xyz, cameraPos); // TODO: Figure out how to properly radialise refraction depth and thus underwater fog // while avoiding oddities when the water plane is close to the clipping plane // radialise = radialDepth / linearDepth; #else float radialDepth = 0.0; #endif vec2 screenCoordsOffset = normal.xy * REFL_BUMP; #if REFRACTION float depthSample = linearizeDepth(mw_sampleRefractionDepthMap(screenCoords)) * radialise; float depthSampleDistorted = linearizeDepth(mw_sampleRefractionDepthMap(screenCoords-screenCoordsOffset)) * radialise; float surfaceDepth = linearizeDepth(gl_FragCoord.z) * radialise; float realWaterDepth = depthSample - surfaceDepth; // undistorted water depth in view direction, independent of frustum screenCoordsOffset *= clamp(realWaterDepth / BUMP_SUPPRESS_DEPTH,0,1); #endif // reflection vec3 reflection = mw_sampleReflectionMap(screenCoords + screenCoordsOffset).rgb; // specular float specular = pow(max(dot(reflect(vVec, normal), lVec), 0.0),SPEC_HARDNESS) * shadow; vec3 waterColor = WATER_COLOR * sunFade; vec4 sunSpec = lcalcSpecular(0); // artificial specularity to make rain ripples more noticeable vec3 skyColorEstimate = vec3(max(0.0, mix(-0.3, 1.0, sunFade))); vec3 rainSpecular = abs(rainRipple.w)*mix(skyColorEstimate, vec3(1.0), 0.05)*0.5; #if REFRACTION // no alpha here, so make sure raindrop ripple specularity gets properly subdued rainSpecular *= clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0); // refraction vec3 refraction = mw_sampleRefractionMap(screenCoords - screenCoordsOffset).rgb; vec3 rawRefraction = refraction; // brighten up the refraction underwater if (cameraPos.z < 0.0) refraction = clamp(refraction * 1.5, 0.0, 1.0); else refraction = mix(refraction, waterColor, clamp(depthSampleDistorted/VISIBILITY, 0.0, 1.0)); // sunlight scattering // normal for sunlight scattering vec3 lNormal = (normal0 * bigWaves.x * 0.5 + normal1 * bigWaves.y * 0.5 + normal2 * midWaves.x * 0.2 + normal3 * midWaves.y * 0.2 + normal4 * smallWaves.x * 0.1 + normal5 * smallWaves.y * 0.1 + rippleAdd); lNormal = normalize(vec3(-lNormal.x * bump, -lNormal.y * bump, lNormal.z)); float sunHeight = lVec.z; vec3 scatterColour = mix(SCATTER_COLOUR*vec3(1.0,0.4,0.0), SCATTER_COLOUR, clamp(1.0-exp(-sunHeight*SUN_EXT), 0.0, 1.0)); vec3 lR = reflect(lVec, lNormal); float lightScatter = clamp(dot(lVec,lNormal)*0.7+0.3, 0.0, 1.0) * clamp(dot(lR, vVec)*2.0-1.2, 0.0, 1.0) * SCATTER_AMOUNT * sunFade * clamp(1.0-exp(-sunHeight), 0.0, 1.0); gl_FragData[0].xyz = mix( mix(refraction, scatterColour, lightScatter), reflection, fresnel) + specular * sunSpec.xyz + rainSpecular; gl_FragData[0].w = 1.0; // wobbly water: hard-fade into refraction texture at extremely low depth, with a wobble based on normal mapping vec3 normalShoreRippleRain = texture2D(normalMap,normalCoords(UV, 2.0, 2.7, -1.0*waterTimer, 0.05, 0.1, normal3)).rgb - 0.5 + texture2D(normalMap,normalCoords(UV, 2.0, 2.7, waterTimer, 0.04, -0.13, normal4)).rgb - 0.5; float verticalWaterDepth = realWaterDepth * mix(abs(vVec.z), 1.0, 0.2); // an estimate float shoreOffset = verticalWaterDepth - (normal2.r + mix(0.0, normalShoreRippleRain.r, rainIntensity) + 0.15)*8.0; float fuzzFactor = min(1.0, 1000.0/surfaceDepth) * mix(abs(vVec.z), 1.0, 0.2); shoreOffset *= fuzzFactor; shoreOffset = clamp(mix(shoreOffset, 1.0, clamp(linearDepth / WOBBLY_SHORE_FADE_DISTANCE, 0.0, 1.0)), 0.0, 1.0); gl_FragData[0].xyz = mix(rawRefraction, gl_FragData[0].xyz, shoreOffset); #else gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * sunSpec.xyz + rainSpecular; gl_FragData[0].w = clamp(fresnel*6.0 + specular * sunSpec.w, 0.0, 1.0); //clamp(fresnel*2.0 + specular * gl_LightSource[0].specular.w, 0.0, 1.0); #endif gl_FragData[0] = applyFogAtDist(gl_FragData[0], radialDepth, linearDepth); #if !@disableNormals gl_FragData[1].rgb = normalize(gl_NormalMatrix * normal) * 0.5 + 0.5; #endif applyShadowDebugOverlay(); }