#ifndef LIB_WATER_RIPPLES #define LIB_WATER_RIPPLES #define RAIN_RIPPLE_DETAIL @rain_ripple_detail const float RAIN_RIPPLE_GAPS = 10.0; const float RAIN_RIPPLE_RADIUS = 0.2; float scramble(float x, float z) { return fract(pow(fract(x)*3.0+1.0, z)); } vec2 randOffset(vec2 c, float time) { time = fract(time/1000.0); c = vec2(c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2, c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7); c.x *= scramble(scramble(time + c.x/1000.0, 4.0), 3.0) + 1.0; c.y *= scramble(scramble(time + c.y/1000.0, 3.5), 3.0) + 1.0; return fract(c); } float randPhase(vec2 c) { return fract((c.x * c.y) / (c.x + c.y + 0.1)); } float blip(float x) { x = max(0.0, 1.0-x*x); return x*x*x; } float blipDerivative(float x) { x = clamp(x, -1.0, 1.0); float n = x*x-1.0; return -6.0*x*n*n; } const float RAIN_RING_TIME_OFFSET = 1.0/6.0; vec4 circle(vec2 coords, vec2 corner, float adjusted_time) { vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(corner, floor(adjusted_time)) - 1.0); float phase = fract(adjusted_time); vec2 toCenter = coords - center; float r = RAIN_RIPPLE_RADIUS; float d = length(toCenter); float ringfollower = (phase-d/r)/RAIN_RING_TIME_OFFSET-1.0; // -1.0 ~ +1.0 cover the breadth of the ripple's ring #if RAIN_RIPPLE_DETAIL > 0 // normal mapped ripples if(ringfollower < -1.0 || ringfollower > 1.0) return vec4(0.0); if(d > 1.0) // normalize center direction vector, but not for near-center ripples toCenter /= d; float height = blip(ringfollower*2.0+0.5); // brighten up outer edge of ring; for fake specularity float range_limit = blip(min(0.0, ringfollower)); float energy = 1.0-phase; vec2 normal2d = -toCenter*blipDerivative(ringfollower)*5.0; vec3 normal = vec3(normal2d, 0.5); vec4 ret = vec4(normal, height); ret.xyw *= energy*energy; // do energy adjustment here rather than later, so that we can use the w component for fake specularity ret.xyz = normalize(ret.xyz) * energy*range_limit; ret.z *= range_limit; return ret; #else // ring-only ripples if(ringfollower < -1.0 || ringfollower > 0.5) return vec4(0.0); float energy = 1.0-phase; float height = blip(ringfollower*2.0+0.5)*energy*energy; // fake specularity return vec4(0.0, 0.0, 0.0, height); #endif } vec4 rain(vec2 uv, float time) { uv *= RAIN_RIPPLE_GAPS; vec2 f_part = fract(uv); vec2 i_part = floor(uv); float adjusted_time = time * 1.2 + randPhase(i_part); #if RAIN_RIPPLE_DETAIL > 0 vec4 a = circle(f_part, i_part, adjusted_time); vec4 b = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET); vec4 c = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*2.0); vec4 d = circle(f_part, i_part, adjusted_time - RAIN_RING_TIME_OFFSET*3.0); vec4 ret; ret.xy = a.xy - b.xy/2.0 + c.xy/4.0 - d.xy/8.0; // z should always point up ret.z = a.z + b.z /2.0 + c.z /4.0 + d.z /8.0; //ret.xyz *= 1.5; // fake specularity looks weird if we use every single ring, also if the inner rings are too bright ret.w = (a.w + c.w /8.0)*1.5; return ret; #else return circle(f_part, i_part, adjusted_time) * 1.5; #endif } vec2 complex_mult(vec2 a, vec2 b) { return vec2(a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x); } vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and fake specularity in w { return rain(uv, time) + rain(complex_mult(uv, vec2(0.4, 0.7)) + vec2(1.2, 3.0),time) #if RAIN_RIPPLE_DETAIL == 2 + rain(uv * 0.75 + vec2( 3.7,18.9),time) + rain(uv * 0.9 + vec2( 5.7,30.1),time) + rain(uv * 1.0 + vec2(10.5 ,5.7),time) #endif ; } #endif