#include "movementsolver.hpp" #include #include #include #include #include #include "../mwbase/environment.hpp" #include "../mwbase/world.hpp" #include "../mwworld/esmstore.hpp" #include "actor.hpp" #include "collisiontype.hpp" #include "constants.hpp" #include "contacttestwrapper.h" #include "physicssystem.hpp" #include "projectile.hpp" #include "projectileconvexcallback.hpp" #include "stepper.hpp" #include "trace.h" #include namespace MWPhysics { static bool isActor(const btCollisionObject* obj) { assert(obj); return obj->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor; } class ContactCollectionCallback : public btCollisionWorld::ContactResultCallback { public: ContactCollectionCallback(const btCollisionObject* me, osg::Vec3f velocity) : mMe(me) { m_collisionFilterGroup = me->getBroadphaseHandle()->m_collisionFilterGroup; m_collisionFilterMask = me->getBroadphaseHandle()->m_collisionFilterMask & ~CollisionType_Projectile; mVelocity = Misc::Convert::toBullet(velocity); } btScalar addSingleResult(btManifoldPoint& contact, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1) override { if (isActor(colObj0Wrap->getCollisionObject()) && isActor(colObj1Wrap->getCollisionObject())) return 0.0; // ignore overlap if we're moving in the same direction as it would push us out (don't change this to >=, // that would break detection when not moving) if (contact.m_normalWorldOnB.dot(mVelocity) > 0.0) return 0.0; auto delta = contact.m_normalWorldOnB * -contact.m_distance1; mContactSum += delta; mMaxX = std::max(std::abs(delta.x()), mMaxX); mMaxY = std::max(std::abs(delta.y()), mMaxY); mMaxZ = std::max(std::abs(delta.z()), mMaxZ); if (contact.m_distance1 < mDistance) { mDistance = contact.m_distance1; mNormal = contact.m_normalWorldOnB; mDelta = delta; return mDistance; } else { return 0.0; } } btScalar mMaxX = 0.0; btScalar mMaxY = 0.0; btScalar mMaxZ = 0.0; btVector3 mContactSum{ 0.0, 0.0, 0.0 }; btVector3 mNormal{ 0.0, 0.0, 0.0 }; // points towards "me" btVector3 mDelta{ 0.0, 0.0, 0.0 }; // points towards "me" btScalar mDistance = 0.0; // negative or zero protected: btVector3 mVelocity; const btCollisionObject* mMe; }; osg::Vec3f MovementSolver::traceDown(const MWWorld::Ptr& ptr, const osg::Vec3f& position, Actor* actor, btCollisionWorld* collisionWorld, float maxHeight) { osg::Vec3f offset = actor->getCollisionObjectPosition() - ptr.getRefData().getPosition().asVec3(); ActorTracer tracer; tracer.findGround(actor, position + offset, position + offset - osg::Vec3f(0, 0, maxHeight), collisionWorld); if (tracer.mFraction >= 1.0f) { actor->setOnGround(false); return position; } actor->setOnGround(true); // Check if we actually found a valid spawn point (use an infinitely thin ray this time). // Required for some broken door destinations in Morrowind.esm, where the spawn point // intersects with other geometry if the actor's base is taken into account btVector3 from = Misc::Convert::toBullet(position); btVector3 to = from - btVector3(0, 0, maxHeight); btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to); resultCallback1.m_collisionFilterGroup = CollisionType_AnyPhysical; resultCallback1.m_collisionFilterMask = CollisionType_World | CollisionType_HeightMap; collisionWorld->rayTest(from, to, resultCallback1); if (resultCallback1.hasHit() && ((Misc::Convert::toOsg(resultCallback1.m_hitPointWorld) - tracer.mEndPos + offset).length2() > 35 * 35 || !isWalkableSlope(tracer.mPlaneNormal))) { actor->setOnSlope(!isWalkableSlope(resultCallback1.m_hitNormalWorld)); return Misc::Convert::toOsg(resultCallback1.m_hitPointWorld) + osg::Vec3f(0.f, 0.f, sGroundOffset); } actor->setOnSlope(!isWalkableSlope(tracer.mPlaneNormal)); return tracer.mEndPos - offset + osg::Vec3f(0.f, 0.f, sGroundOffset); } void MovementSolver::move( ActorFrameData& actor, float time, const btCollisionWorld* collisionWorld, const WorldFrameData& worldData) { // Reset per-frame data actor.mWalkingOnWater = false; // Anything to collide with? if (actor.mSkipCollisionDetection) { actor.mPosition += (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement * time; return; } // Adjust for collision mesh offset relative to actor's "location" // (doTrace doesn't take local/interior collision shape translation into account, so we have to do it on our // own) for compatibility with vanilla assets, we have to derive this from the vertical half extent instead of // from internal hull translation if not for this hack, the "correct" collision hull position would be // physicActor->getScaledMeshTranslation() actor.mPosition.z() += actor.mHalfExtentsZ; // vanilla-accurate float swimlevel = actor.mSwimLevel + actor.mHalfExtentsZ; ActorTracer tracer; osg::Vec3f velocity; // Dead and paralyzed actors underwater will float to the surface, // if the CharacterController tells us to do so if (actor.mMovement.z() > 0 && actor.mInert && actor.mPosition.z() < swimlevel) { velocity = osg::Vec3f(0, 0, 1) * 25; } else if (actor.mPosition.z() < swimlevel || actor.mFlying) { velocity = (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; } else { velocity = (osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; if ((velocity.z() > 0.f && actor.mIsOnGround && !actor.mIsOnSlope) || (velocity.z() > 0.f && velocity.z() + actor.mInertia.z() <= -velocity.z() && actor.mIsOnSlope)) actor.mInertia = velocity; else if (!actor.mIsOnGround || actor.mIsOnSlope) velocity = velocity + actor.mInertia; } // Now that we have the effective movement vector, apply wind forces to it if (worldData.mIsInStorm && velocity.length() > 0) { osg::Vec3f stormDirection = worldData.mStormDirection; float angleDegrees = osg::RadiansToDegrees( std::acos(stormDirection * velocity / (stormDirection.length() * velocity.length()))); static const float fStromWalkMult = MWBase::Environment::get() .getESMStore() ->get() .find("fStromWalkMult") ->mValue.getFloat(); velocity *= 1.f - (fStromWalkMult * (angleDegrees / 180.f)); } Stepper stepper(collisionWorld, actor.mCollisionObject); osg::Vec3f origVelocity = velocity; osg::Vec3f newPosition = actor.mPosition; /* * A loop to find newPosition using tracer, if successful different from the starting position. * nextpos is the local variable used to find potential newPosition, using velocity and remainingTime * The initial velocity was set earlier (see above). */ float remainingTime = time; int numTimesSlid = 0; osg::Vec3f lastSlideNormal(0, 0, 1); osg::Vec3f lastSlideNormalFallback(0, 0, 1); bool forceGroundTest = false; for (int iterations = 0; iterations < sMaxIterations && remainingTime > 0.0001f; ++iterations) { osg::Vec3f nextpos = newPosition + velocity * remainingTime; bool underwater = newPosition.z() < swimlevel; // If not able to fly, don't allow to swim up into the air if (!actor.mFlying && nextpos.z() > swimlevel && underwater) { const osg::Vec3f down(0, 0, -1); velocity = reject(velocity, down); // NOTE: remainingTime is unchanged before the loop continues continue; // velocity updated, calculate nextpos again } if ((newPosition - nextpos).length2() > 0.0001) { // trace to where character would go if there were no obstructions tracer.doTrace(actor.mCollisionObject, newPosition, nextpos, collisionWorld, actor.mIsOnGround); // check for obstructions if (tracer.mFraction >= 1.0f) { newPosition = tracer.mEndPos; // ok to move, so set newPosition break; } } else { // The current position and next position are nearly the same, so just exit. // Note: Bullet can trigger an assert in debug modes if the positions // are the same, since that causes it to attempt to normalize a zero // length vector (which can also happen with nearly identical vectors, since // precision can be lost due to any math Bullet does internally). Since we // aren't performing any collision detection, we want to reject the next // position, so that we don't slowly move inside another object. break; } bool seenGround = !actor.mFlying && !underwater && ((actor.mIsOnGround && !actor.mIsOnSlope) || isWalkableSlope(tracer.mPlaneNormal)); // We hit something. Check if we can step up. float hitHeight = tracer.mHitPoint.z() - tracer.mEndPos.z() + actor.mHalfExtentsZ; osg::Vec3f oldPosition = newPosition; bool usedStepLogic = false; if (hitHeight < Constants::sStepSizeUp && !isActor(tracer.mHitObject)) { // Try to step up onto it. // NOTE: this modifies newPosition and velocity on its own if successful usedStepLogic = stepper.step(newPosition, velocity, remainingTime, seenGround, iterations == 0); } if (usedStepLogic) { if (actor.mIsAquatic && newPosition.z() + actor.mHalfExtentsZ > actor.mWaterlevel) newPosition = oldPosition; else if (!actor.mFlying && actor.mPosition.z() >= swimlevel) forceGroundTest = true; } else { // Can't step up, so slide against what we ran into remainingTime *= (1.0f - tracer.mFraction); auto planeNormal = tracer.mPlaneNormal; // need to know the unadjusted normal to handle certain types of seams properly const auto origPlaneNormal = planeNormal; // If we touched the ground this frame, and whatever we ran into is a wall of some sort, // pretend that its collision normal is pointing horizontally // (fixes snagging on slightly downward-facing walls, and crawling up the bases of very steep walls // because of the collision margin) if (seenGround && !isWalkableSlope(planeNormal) && planeNormal.z() != 0) { planeNormal.z() = 0; planeNormal.normalize(); } // Move up to what we ran into (with a bit of a collision margin) if ((newPosition - tracer.mEndPos).length2() > sCollisionMargin * sCollisionMargin) { auto direction = velocity; direction.normalize(); newPosition = tracer.mEndPos; newPosition -= direction * sCollisionMargin; } osg::Vec3f newVelocity = (velocity * planeNormal <= 0.0) ? reject(velocity, planeNormal) : velocity; bool usedSeamLogic = false; // check for the current and previous collision planes forming an acute angle; slide along the seam if // they do for this, we want to use the original plane normal, or else certain types of geometry will // snag if (numTimesSlid > 0) { auto dotA = lastSlideNormal * origPlaneNormal; auto dotB = lastSlideNormalFallback * origPlaneNormal; if (numTimesSlid <= 1) // ignore fallback normal if this is only the first or second slide dotB = 1.0; if (dotA <= 0.0 || dotB <= 0.0) { osg::Vec3f bestNormal = lastSlideNormal; // use previous-to-previous collision plane if it's acute with current plane but actual previous // plane isn't if (dotB < dotA) { bestNormal = lastSlideNormalFallback; lastSlideNormal = lastSlideNormalFallback; } auto constraintVector = bestNormal ^ origPlaneNormal; // cross product if (constraintVector.length2() > 0) // only if it's not zero length { constraintVector.normalize(); newVelocity = project(velocity, constraintVector); // version of surface rejection for acute crevices/seams auto averageNormal = bestNormal + origPlaneNormal; averageNormal.normalize(); tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + averageNormal * (sCollisionMargin * 2.0), collisionWorld); newPosition = (newPosition + tracer.mEndPos) / 2.0; usedSeamLogic = true; } } } // otherwise just keep the normal vector rejection // move away from the collision plane slightly, if possible // this reduces getting stuck in some concave geometry, like the gaps above the railings in some // ald'ruhn buildings this is different from the normal collision margin, because the normal collision // margin is along the movement path, but this is along the collision normal if (!usedSeamLogic) { tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + planeNormal * (sCollisionMargin * 2.0), collisionWorld); newPosition = (newPosition + tracer.mEndPos) / 2.0; } // short circuit if we went backwards, but only if it was mostly horizontal and we're on the ground if (seenGround && newVelocity * origVelocity <= 0.0f) { auto perpendicular = newVelocity ^ origVelocity; if (perpendicular.length2() > 0.0f) { perpendicular.normalize(); if (std::abs(perpendicular.z()) > 0.7071f) break; } } // Do not allow sliding up steep slopes if there is gravity. // The purpose of this is to prevent air control from letting you slide up tall, unwalkable slopes. // For that purpose, it is not necessary to do it when trying to slide along acute seams/crevices (i.e. // usedSeamLogic) and doing so would actually break air control in some situations where vanilla allows // air control. Vanilla actually allows you to slide up slopes as long as you're in the "walking" // animation, which can be true even in the air, so allowing this for seams isn't a compatibility break. if (newPosition.z() >= swimlevel && !actor.mFlying && !isWalkableSlope(planeNormal) && !usedSeamLogic) newVelocity.z() = std::min(newVelocity.z(), velocity.z()); numTimesSlid += 1; lastSlideNormalFallback = lastSlideNormal; lastSlideNormal = origPlaneNormal; velocity = newVelocity; } } bool isOnGround = false; bool isOnSlope = false; if (forceGroundTest || (actor.mInertia.z() <= 0.f && newPosition.z() >= swimlevel)) { osg::Vec3f from = newPosition; auto dropDistance = 2 * sGroundOffset + (actor.mIsOnGround ? sStepSizeDown : 0); osg::Vec3f to = newPosition - osg::Vec3f(0, 0, dropDistance); tracer.doTrace(actor.mCollisionObject, from, to, collisionWorld, actor.mIsOnGround); if (tracer.mFraction < 1.0f) { if (!isActor(tracer.mHitObject)) { isOnGround = true; isOnSlope = !isWalkableSlope(tracer.mPlaneNormal); actor.mStandingOn = tracer.mHitObject; if (actor.mStandingOn->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Water) actor.mWalkingOnWater = true; if (!actor.mFlying && !isOnSlope) { if (tracer.mFraction * dropDistance > sGroundOffset) newPosition.z() = tracer.mEndPos.z() + sGroundOffset; else { newPosition.z() = tracer.mEndPos.z(); tracer.doTrace(actor.mCollisionObject, newPosition, newPosition + osg::Vec3f(0, 0, 2 * sGroundOffset), collisionWorld); newPosition = (newPosition + tracer.mEndPos) / 2.0; } } } else { // Vanilla allows actors to float on top of other actors. Do not push them off. if (!actor.mFlying && isWalkableSlope(tracer.mPlaneNormal) && tracer.mEndPos.z() + sGroundOffset <= newPosition.z()) newPosition.z() = tracer.mEndPos.z() + sGroundOffset; isOnGround = false; } } // forcibly treat stuck actors as if they're on flat ground because buggy collisions when inside of things // can/will break ground detection if (actor.mStuckFrames > 0) { isOnGround = true; isOnSlope = false; } } if ((isOnGround && !isOnSlope) || newPosition.z() < swimlevel || actor.mFlying) actor.mInertia = osg::Vec3f(0.f, 0.f, 0.f); else { actor.mInertia.z() -= time * Constants::GravityConst * Constants::UnitsPerMeter; if (actor.mInertia.z() < 0) actor.mInertia.z() *= actor.mSlowFall; if (actor.mSlowFall < 1.f) { actor.mInertia.x() *= actor.mSlowFall; actor.mInertia.y() *= actor.mSlowFall; } } actor.mIsOnGround = isOnGround; actor.mIsOnSlope = isOnSlope; actor.mPosition = newPosition; // remove what was added earlier in compensating for doTrace not taking interior transformation into account actor.mPosition.z() -= actor.mHalfExtentsZ; // vanilla-accurate } void MovementSolver::move(ProjectileFrameData& projectile, float time, const btCollisionWorld* collisionWorld) { btVector3 btFrom = Misc::Convert::toBullet(projectile.mPosition); btVector3 btTo = Misc::Convert::toBullet(projectile.mPosition + projectile.mMovement * time); if (btFrom == btTo) return; ProjectileConvexCallback resultCallback( projectile.mCaster, projectile.mCollisionObject, btFrom, btTo, projectile.mProjectile); resultCallback.m_collisionFilterMask = CollisionType_AnyPhysical; resultCallback.m_collisionFilterGroup = CollisionType_Projectile; const btQuaternion btrot = btQuaternion::getIdentity(); btTransform from_(btrot, btFrom); btTransform to_(btrot, btTo); const btCollisionShape* shape = projectile.mCollisionObject->getCollisionShape(); assert(shape->isConvex()); collisionWorld->convexSweepTest(static_cast(shape), from_, to_, resultCallback); projectile.mPosition = Misc::Convert::toOsg(projectile.mProjectile->isActive() ? btTo : resultCallback.m_hitPointWorld); } btVector3 addMarginToDelta(btVector3 delta) { if (delta.length2() == 0.0) return delta; return delta + delta.normalized() * sCollisionMargin; } void MovementSolver::unstuck(ActorFrameData& actor, const btCollisionWorld* collisionWorld) { if (actor.mSkipCollisionDetection) // noclipping/tcl return; if (actor.mMovement.length2() == 0) // no AI nor player attempted to move, current position is assumed correct return; auto tempPosition = actor.mPosition; if (actor.mStuckFrames >= 10) { if ((actor.mLastStuckPosition - actor.mPosition).length2() < 100) return; else { actor.mStuckFrames = 0; actor.mLastStuckPosition = { 0, 0, 0 }; } } // use vanilla-accurate collision hull position hack (do same hitbox offset hack as movement solver) // if vanilla compatibility didn't matter, the "correct" collision hull position would be // physicActor->getScaledMeshTranslation() const auto verticalHalfExtent = osg::Vec3f(0.0, 0.0, actor.mHalfExtentsZ); // use a 3d approximation of the movement vector to better judge player intent auto velocity = (osg::Quat(actor.mRotation.x(), osg::Vec3f(-1, 0, 0)) * osg::Quat(actor.mRotation.y(), osg::Vec3f(0, 0, -1))) * actor.mMovement; // try to pop outside of the world before doing anything else if we're inside of it if (!actor.mIsOnGround || actor.mIsOnSlope) velocity += actor.mInertia; // because of the internal collision box offset hack, and the fact that we're moving the collision box manually, // we need to replicate part of the collision box's transform process from scratch osg::Vec3f refPosition = tempPosition + verticalHalfExtent; osg::Vec3f goodPosition = refPosition; const btTransform oldTransform = actor.mCollisionObject->getWorldTransform(); btTransform newTransform = oldTransform; auto gatherContacts = [&](btVector3 newOffset) -> ContactCollectionCallback { goodPosition = refPosition + Misc::Convert::toOsg(addMarginToDelta(newOffset)); newTransform.setOrigin(Misc::Convert::toBullet(goodPosition)); actor.mCollisionObject->setWorldTransform(newTransform); ContactCollectionCallback callback{ actor.mCollisionObject, velocity }; ContactTestWrapper::contactTest( const_cast(collisionWorld), actor.mCollisionObject, callback); return callback; }; // check whether we're inside the world with our collision box with manually-derived offset auto contactCallback = gatherContacts({ 0.0, 0.0, 0.0 }); if (contactCallback.mDistance < -sAllowedPenetration) { ++actor.mStuckFrames; actor.mLastStuckPosition = actor.mPosition; // we are; try moving it out of the world auto positionDelta = contactCallback.mContactSum; // limit rejection delta to the largest known individual rejections if (std::abs(positionDelta.x()) > contactCallback.mMaxX) positionDelta *= contactCallback.mMaxX / std::abs(positionDelta.x()); if (std::abs(positionDelta.y()) > contactCallback.mMaxY) positionDelta *= contactCallback.mMaxY / std::abs(positionDelta.y()); if (std::abs(positionDelta.z()) > contactCallback.mMaxZ) positionDelta *= contactCallback.mMaxZ / std::abs(positionDelta.z()); auto contactCallback2 = gatherContacts(positionDelta); // successfully moved further out from contact (does not have to be in open space, just less inside of // things) if (contactCallback2.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; // try again but only upwards (fixes some bad coc floors) else { // upwards-only offset auto contactCallback3 = gatherContacts({ 0.0, 0.0, std::abs(positionDelta.z()) }); // success if (contactCallback3.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; else // try again but fixed distance up { auto contactCallback4 = gatherContacts({ 0.0, 0.0, 10.0 }); // success if (contactCallback4.mDistance > contactCallback.mDistance) tempPosition = goodPosition - verticalHalfExtent; } } } else { actor.mStuckFrames = 0; actor.mLastStuckPosition = { 0, 0, 0 }; } actor.mCollisionObject->setWorldTransform(oldTransform); actor.mPosition = tempPosition; } }