/* OpenMW - The completely unofficial reimplementation of Morrowind Copyright (C) 2008-2010 Nicolay Korslund Email: < korslund@gmail.com > WWW: http://openmw.sourceforge.net/ This file (data.h) is part of the OpenMW package. OpenMW is distributed as free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 3, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License version 3 along with this program. If not, see http://www.gnu.org/licenses/ . */ #ifndef _NIF_DATA_H_ #define _NIF_DATA_H_ #include "controlled.hpp" namespace Nif { struct NiSourceTexture : Named { // Is this an external (references a separate texture file) or // internal (data is inside the nif itself) texture? bool external; SString filename; // In case of external textures NiPixelDataPtr data; // In case of internal textures /* Pixel layout 0 - Palettised 1 - High color 16 2 - True color 32 3 - Compressed 4 - Bumpmap 5 - Default */ int pixel; /* Mipmap format 0 - no 1 - yes 2 - default */ int mipmap; /* Alpha 0 - none 1 - binary 2 - smooth 3 - default (use material alpha, or multiply material with texture if present) */ int alpha; void read(NIFFile *nif) { Named::read(nif); external = nif->getByte(); if(external) filename = nif->getString(); else { nif->getByte(); // always 1 data.read(nif); } pixel = nif->getInt(); mipmap = nif->getInt(); alpha = nif->getInt(); nif->getByte(); // always 1 } }; // Common ancestor for several data classes struct ShapeData : Record { FloatArray vertices, normals, colors, uvlist; const Vector *center; float radius; void read(NIFFile *nif) { int verts = nif->getShort(); if(nif->getInt()) vertices = nif->getFloatLen(verts*3); if(nif->getInt()) normals = nif->getFloatLen(verts*3); center = nif->getVector(); radius = nif->getFloat(); if(nif->getInt()) colors = nif->getFloatLen(verts*4); int uvs = nif->getShort(); // Only the first 6 bits are used as a count. I think the rest are // flags of some sort. uvs &= 0x3f; if(nif->getInt()) uvlist = nif->getFloatLen(uvs*verts*2); } }; struct NiTriShapeData : ShapeData { // Triangles, three vertex indices per triangle SliceArray triangles; void read(NIFFile *nif) { ShapeData::read(nif); int tris = nif->getShort(); if(tris) { // We have three times as many vertices as triangles, so this // is always equal to tris*3. int cnt = nif->getInt(); triangles = nif->getArrayLen(cnt); } // Read the match list, which lists the vertices that are equal to // vertices. We don't actually need need this for anything, so // just skip it. int verts = nif->getShort(); if(verts) { for(int i=0;igetShort(); nif->skip(num*sizeof(short)); } } } }; struct NiAutoNormalParticlesData : ShapeData { int activeCount; void read(NIFFile *nif) { ShapeData::read(nif); // Should always match the number of vertices activeCount = nif->getShort(); // Skip all the info, we don't support particles yet nif->getFloat(); // Active radius ? nif->getShort(); // Number of valid entries in the following arrays ? if(nif->getInt()) // Particle sizes nif->getFloatLen(activeCount); } }; struct NiRotatingParticlesData : NiAutoNormalParticlesData { void read(NIFFile *nif) { NiAutoNormalParticlesData::read(nif); if(nif->getInt()) // Rotation quaternions. I THINK activeCount is correct here, // but verts (vertex number) might also be correct, if there is // any case where the two don't match. nif->getArrayLen(activeCount); } }; struct NiPosData : Record { void read(NIFFile *nif) { int count = nif->getInt(); int type = nif->getInt(); if(type != 1 && type != 2) nif->fail("Cannot handle NiPosData type"); // TODO: Could make structs of these. Seems to be identical to // translation in NiKeyframeData. for(int i=0; igetFloat(); nif->getVector(); // This isn't really shared between type 1 // and type 2, most likely if(type == 2) { nif->getVector(); nif->getVector(); } } } }; struct NiUVData : Record { void read(NIFFile *nif) { // TODO: This is claimed to be a "float animation key", which is // also used in FloatData and KeyframeData. We could probably // reuse and refactor a lot of this if we actually use it at some // point. for(int i=0; i<2; i++) { int count = nif->getInt(); if(count) { nif->getInt(); // always 2 nif->getArrayLen(count); // Really one time float + one vector } } // Always 0 nif->getInt(); nif->getInt(); } }; struct NiFloatData : Record { void read(NIFFile *nif) { int count = nif->getInt(); nif->getInt(); // always 2 nif->getArrayLen(count); // Really one time float + one vector } }; struct NiPixelData : Record { unsigned int rmask, gmask, bmask, amask; int bpp, mips; void read(NIFFile *nif) { nif->getInt(); // always 0 or 1 rmask = nif->getInt(); // usually 0xff gmask = nif->getInt(); // usually 0xff00 bmask = nif->getInt(); // usually 0xff0000 amask = nif->getInt(); // usually 0xff000000 or zero bpp = nif->getInt(); // Unknown nif->skip(12); mips = nif->getInt(); // Bytes per pixel, should be bpp * 8 int bytes = nif->getInt(); for(int i=0; igetInt(); int y = nif->getInt(); int offset = nif->getInt(); } // Skip the data unsigned int dataSize = nif->getInt(); nif->skip(dataSize); } }; struct NiColorData : Record { struct ColorData { float time; Vector4 rgba; }; void read(NIFFile *nif) { int count = nif->getInt(); nif->getInt(); // always 1 // Skip the data assert(sizeof(ColorData) == 4*5); nif->skip(sizeof(ColorData) * count); } }; struct NiVisData : Record { void read(NIFFile *nif) { int count = nif->getInt(); /* Each VisData consists of: float time; byte isSet; If you implement this, make sure you use a packed struct (sizeof==5), or read each element individually. */ nif->skip(count*5); } }; struct NiSkinInstance : Record { NiSkinDataPtr data; NodePtr root; NodeList bones; void read(NIFFile *nif) { data.read(nif); root.read(nif); bones.read(nif); if(data.empty() || root.empty()) nif->fail("NiSkinInstance missing root or data"); } void post(NIFFile *nif); }; struct NiSkinData : Record { // This is to make sure the structs are packed, ie. that the // compiler doesn't mess them up with extra alignment bytes. #pragma pack(push) #pragma pack(1) struct BoneTrafo { Matrix rotation; // Rotation offset from bone? Vector trans; // Translation float scale; // Probably scale (always 1) }; struct VertWeight { short vertex; float weight; }; #pragma pack(pop) struct BoneInfo { const BoneTrafo *trafo; const Vector4 *unknown; SliceArray weights; }; const BoneTrafo *trafo; std::vector bones; void read(NIFFile *nif) { assert(sizeof(BoneTrafo) == 4*(9+3+1)); assert(sizeof(VertWeight) == 6); trafo = nif->getPtr(); int boneNum = nif->getInt(); nif->getInt(); // -1 bones.resize(boneNum); for(int i=0;igetPtr(); bi.unknown = nif->getVector4(); // Number of vertex weights int count = nif->getShort(); bi.weights = nif->getArrayLen(count); } } }; struct NiMorphData : Record { void read(NIFFile *nif) { int morphCount = nif->getInt(); int vertCount = nif->getInt(); nif->getByte(); for(int i=0; igetInt(); nif->getInt(); if(magic) // Time, data, forward, backward tangents nif->getFloatLen(4*magic); nif->getFloatLen(vertCount*3); } } }; struct NiKeyframeData : Record { void read(NIFFile *nif) { // Rotations first int count = nif->getInt(); if(count) { int type = nif->getInt(); if(type == 1) nif->skip(count*4*5); // time + quaternion else if(type == 3) nif->skip(count*4*8); // rot1 + tension+bias+continuity else if(type == 4) { for(int j=0;jgetFloat(); // time for(int i=0; i<3; i++) { int cnt = nif->getInt(); int type = nif->getInt(); if(type == 1) nif->skip(cnt*4*2); // time + unknown else if(type == 2) nif->skip(cnt*4*4); // time + unknown vector else nif->fail("Unknown sub-rotation type"); } } } else nif->fail("Unknown rotation type in NiKeyframeData"); } // Then translation count = nif->getInt(); if(count) { int type = nif->getInt(); if(type == 1) nif->getFloatLen(count*4); // time + translation else if(type == 2) nif->getFloatLen(count*10); // trans1 + forward + backward else if(type == 3) nif->getFloatLen(count*7); // trans1 + tension,bias,continuity else nif->fail("Unknown translation type"); } // Finally, scalings count = nif->getInt(); if(count) { int type = nif->getInt(); int size; if(type == 1) size = 2; // time+scale else if(type == 2) size = 4; // 1 + forward + backward (floats) else if(type == 3) size = 5; // 1 + tbc else nif->fail("Unknown scaling type"); nif->getFloatLen(count*size); } } }; } // Namespace #endif