#include "nifloader.hpp" #include #include #include #include #include // resource #include #include #include #include #include // skel #include #include #include #include // particle #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "particle.hpp" #include "userdata.hpp" namespace { osg::Matrixf toMatrix(const Nif::Transformation& nifTrafo) { osg::Matrixf transform; transform.setTrans(nifTrafo.pos); for (int i=0;i<3;++i) for (int j=0;j<3;++j) transform(j,i) = nifTrafo.rotation.mValues[i][j] * nifTrafo.scale; // NB column/row major difference return transform; } osg::Matrixf getWorldTransform(const Nif::Node* node) { if(node->parent != NULL) return toMatrix(node->trafo) * getWorldTransform(node->parent); return toMatrix(node->trafo); } void getAllNiNodes(const Nif::Node* node, std::vector& outIndices) { const Nif::NiNode* ninode = dynamic_cast(node); if (ninode) { outIndices.push_back(ninode->recIndex); for (unsigned int i=0; ichildren.length(); ++i) if (!ninode->children[i].empty()) getAllNiNodes(ninode->children[i].getPtr(), outIndices); } } osg::BlendFunc::BlendFuncMode getBlendMode(int mode) { switch(mode) { case 0: return osg::BlendFunc::ONE; case 1: return osg::BlendFunc::ZERO; case 2: return osg::BlendFunc::SRC_COLOR; case 3: return osg::BlendFunc::ONE_MINUS_SRC_COLOR; case 4: return osg::BlendFunc::DST_COLOR; case 5: return osg::BlendFunc::ONE_MINUS_DST_COLOR; case 6: return osg::BlendFunc::SRC_ALPHA; case 7: return osg::BlendFunc::ONE_MINUS_SRC_ALPHA; case 8: return osg::BlendFunc::DST_ALPHA; case 9: return osg::BlendFunc::ONE_MINUS_DST_ALPHA; case 10: return osg::BlendFunc::SRC_ALPHA_SATURATE; default: std::cerr<< "Unexpected blend mode: "<< mode << std::endl; return osg::BlendFunc::SRC_ALPHA; } } osg::AlphaFunc::ComparisonFunction getTestMode(int mode) { switch (mode) { case 0: return osg::AlphaFunc::ALWAYS; case 1: return osg::AlphaFunc::LESS; case 2: return osg::AlphaFunc::EQUAL; case 3: return osg::AlphaFunc::LEQUAL; case 4: return osg::AlphaFunc::GREATER; case 5: return osg::AlphaFunc::NOTEQUAL; case 6: return osg::AlphaFunc::GEQUAL; case 7: return osg::AlphaFunc::NEVER; default: std::cerr << "Unexpected blend mode: " << mode << std::endl; return osg::AlphaFunc::LEQUAL; } } // Collect all properties affecting the given node that should be applied to an osg::Material. void collectMaterialProperties(const Nif::Node* nifNode, std::vector& out) { const Nif::PropertyList& props = nifNode->props; for (size_t i = 0; i recType) { case Nif::RC_NiMaterialProperty: case Nif::RC_NiVertexColorProperty: case Nif::RC_NiSpecularProperty: out.push_back(props[i].getPtr()); break; default: break; } } } if (nifNode->parent) collectMaterialProperties(nifNode->parent, out); } // NodeCallback used to update the bone matrices in skeleton space as needed for skinning. // Must be set on a Bone. class UpdateBone : public osg::NodeCallback { public: UpdateBone() {} UpdateBone(const UpdateBone& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY) : osg::Object(copy, copyop), osg::NodeCallback(copy, copyop) { } META_Object(NifOsg, UpdateBone) // Callback method called by the NodeVisitor when visiting a node. void operator()(osg::Node* node, osg::NodeVisitor* nv) { if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR) { osgAnimation::Bone* b = dynamic_cast(node); if (!b) { OSG_WARN << "Warning: UpdateBone set on non-Bone object." << std::endl; return; } osgAnimation::Bone* parent = b->getBoneParent(); if (parent) b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace() * parent->getMatrixInSkeletonSpace()); else b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace()); } traverse(node,nv); } }; // Custom node used to have a transform always oriented towards the camera. Can have translation and scale // set just like a regular MatrixTransform, but the rotation set will be overridden in order to face the camera. class BillboardNode : public osg::MatrixTransform { public: BillboardNode() : osg::MatrixTransform() {} BillboardNode(const BillboardNode& copy, const osg::CopyOp& copyop) : osg::MatrixTransform(copy, copyop) {} BillboardNode(const osg::Matrix& matrix) : osg::MatrixTransform(matrix) {} META_Node(NifOsg, BillboardNode) virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix, osg::NodeVisitor*) const { if (_referenceFrame==RELATIVE_RF) { const NifOsg::NodeUserData* userdata = static_cast(getUserDataContainer()->getUserObject(0)); matrix.preMult(_matrix); matrix.setRotate(osg::Quat()); matrix(0,0) = userdata->mScale; matrix(1,1) = userdata->mScale; matrix(2,2) = userdata->mScale; } else // absolute { matrix = _matrix; } return true; } }; // NodeCallback used to set the inverse of the parent bone's matrix in skeleton space // on the MatrixTransform that the NodeCallback is attached to. This is used so we can // attach skinned meshes to their actual parent node, while still having the skinning // work in skeleton space as expected. // Must be set on a MatrixTransform. class InvertBoneMatrix : public osg::NodeCallback { public: InvertBoneMatrix() {} InvertBoneMatrix(const InvertBoneMatrix& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY) : osg::Object(copy, copyop), osg::NodeCallback(copy, copyop) {} META_Object(NifOsg, InvertBoneMatrix) void operator()(osg::Node* node, osg::NodeVisitor* nv) { if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR) { osg::NodePath path = nv->getNodePath(); path.pop_back(); osg::MatrixTransform* trans = dynamic_cast(node); for (osg::NodePath::iterator it = path.begin(); it != path.end(); ++it) { if (dynamic_cast(*it)) { path.erase(path.begin(), it+1); // the bone's transform in skeleton space osg::Matrix boneMat = osg::computeLocalToWorld( path ); trans->setMatrix(osg::Matrix::inverse(boneMat)); break; } } } traverse(node,nv); } }; osg::ref_ptr handleMorphGeometry(const Nif::NiGeomMorpherController* morpher) { osg::ref_ptr morphGeom = new osgAnimation::MorphGeometry; morphGeom->setMethod(osgAnimation::MorphGeometry::RELATIVE); // No normals available in the MorphData morphGeom->setMorphNormals(false); const std::vector& morphs = morpher->data.getPtr()->mMorphs; // Note we are not interested in morph 0, which just contains the original vertices for (unsigned int i = 1; i < morphs.size(); ++i) { osg::ref_ptr morphTarget = new osg::Geometry; morphTarget->setVertexArray(new osg::Vec3Array(morphs[i].mVertices.size(), &morphs[i].mVertices[0])); morphGeom->addMorphTarget(morphTarget, 0.f); } return morphGeom; } } namespace NifOsg { void Loader::load(Nif::NIFFilePtr nif, osg::Group *parentNode) { mNif = nif; if (nif->numRoots() < 1) { nif->warn("Found no root nodes"); return; } const Nif::Record* r = nif->getRoot(0); assert(r != NULL); const Nif::Node* nifNode = dynamic_cast(r); if (nifNode == NULL) { nif->warn("First root was not a node, but a " + r->recName); return; } mRootNode = parentNode; handleNode(nifNode, parentNode, false, std::map(), 0, 0); } void Loader::loadAsSkeleton(Nif::NIFFilePtr nif, osg::Group *parentNode) { mNif = nif; if (nif->numRoots() < 1) { nif->warn("Found no root nodes"); return; } const Nif::Record* r = nif->getRoot(0); assert(r != NULL); const Nif::Node* nifNode = dynamic_cast(r); if (nifNode == NULL) { nif->warn("First root was not a node, but a " + r->recName); return; } mRootNode = parentNode; osgAnimation::Skeleton* skel = new osgAnimation::Skeleton; mSkeleton = skel; mRootNode->addChild(mSkeleton); handleNode(nifNode, mSkeleton, true, std::map(), 0, 0); } void Loader::applyNodeProperties(const Nif::Node *nifNode, osg::Node *applyTo, std::map& boundTextures, int animflags) { const Nif::PropertyList& props = nifNode->props; for (size_t i = 0; i mSource = boost::shared_ptr(new FrameTimeSource); toSetup->mFunction = boost::shared_ptr(new ControllerFunction(ctrl, 1 /*autoPlay*/)); } void Loader::handleNode(const Nif::Node* nifNode, osg::Group* parentNode, bool createSkeleton, std::map boundTextures, int animflags, int particleflags, bool collisionNode) { osg::ref_ptr transformNode; if (nifNode->recType == Nif::RC_NiBillboardNode) { transformNode = new BillboardNode(toMatrix(nifNode->trafo)); } else if (createSkeleton) { osgAnimation::Bone* bone = new osgAnimation::Bone; transformNode = bone; bone->setMatrix(toMatrix(nifNode->trafo)); bone->setName(nifNode->name); bone->setInvBindMatrixInSkeletonSpace(osg::Matrixf::inverse(getWorldTransform(nifNode))); } else { transformNode = new osg::MatrixTransform(toMatrix(nifNode->trafo)); } // UserData used for a variety of features: // - finding the correct emitter node for a particle system // - establishing connections to the animated collision shapes, which are handled in a separate loader // - finding a random child NiNode in NiBspArrayController // - storing the previous 3x3 rotation and scale values for when a KeyframeController wants to // change only certain elements of the 4x4 transform transformNode->getOrCreateUserDataContainer()->addUserObject( new NodeUserData(nifNode->recIndex, nifNode->trafo.scale, nifNode->trafo.rotation)); if (nifNode->recType == Nif::RC_NiBSAnimationNode) animflags |= nifNode->flags; if (nifNode->recType == Nif::RC_NiBSParticleNode) particleflags |= nifNode->flags; // Hide collision shapes, but don't skip the subgraph // We still need to animate the hidden bones so the physics system can access them if (nifNode->recType == Nif::RC_RootCollisionNode) { collisionNode = true; // Leave mask for UpdateVisitor enabled transformNode->setNodeMask(0x1); } // We could probably skip hidden nodes entirely if they don't have a VisController that // might make them visible later if (nifNode->flags & Nif::NiNode::Flag_Hidden) transformNode->setNodeMask(0x1); // Leave mask for UpdateVisitor enabled // Insert bones at position 0 to prevent update order problems (see comment in osg Skeleton.cpp) parentNode->insertChild(0, transformNode); applyNodeProperties(nifNode, transformNode, boundTextures, animflags); if (nifNode->recType == Nif::RC_NiTriShape && !collisionNode) { const Nif::NiTriShape* triShape = static_cast(nifNode); if (!createSkeleton || triShape->skin.empty()) handleTriShape(triShape, transformNode, boundTextures, animflags); else handleSkinnedTriShape(triShape, transformNode, boundTextures, animflags); if (!nifNode->controller.empty()) handleMeshControllers(nifNode, transformNode, boundTextures, animflags); } if(nifNode->recType == Nif::RC_NiAutoNormalParticles || nifNode->recType == Nif::RC_NiRotatingParticles) handleParticleSystem(nifNode, transformNode, animflags, particleflags); if (!nifNode->controller.empty()) handleNodeControllers(nifNode, transformNode, animflags); // Added last so the changes from KeyframeControllers are taken into account if (osgAnimation::Bone* bone = dynamic_cast(transformNode.get())) bone->addUpdateCallback(new UpdateBone); const Nif::NiNode *ninode = dynamic_cast(nifNode); if(ninode) { const Nif::NodeList &children = ninode->children; for(size_t i = 0;i < children.length();++i) { if(!children[i].empty()) handleNode(children[i].getPtr(), transformNode, createSkeleton, boundTextures, animflags, particleflags, collisionNode); } } } void Loader::handleMeshControllers(const Nif::Node *nifNode, osg::MatrixTransform *transformNode, const std::map &boundTextures, int animflags) { for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiUVController) { const Nif::NiUVController *uvctrl = static_cast(ctrl.getPtr()); std::set texUnits; for (std::map::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it) texUnits.insert(it->first); osg::ref_ptr ctrl = new UVController(uvctrl->data.getPtr(), texUnits); setupController(uvctrl, ctrl, animflags); transformNode->getOrCreateStateSet()->setDataVariance(osg::StateSet::DYNAMIC); transformNode->addUpdateCallback(ctrl); } } } void Loader::handleNodeControllers(const Nif::Node* nifNode, osg::MatrixTransform* transformNode, int animflags) { bool seenKeyframeCtrl = false; for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiKeyframeController) { const Nif::NiKeyframeController *key = static_cast(ctrl.getPtr()); if(!key->data.empty()) { if (seenKeyframeCtrl) { std::cerr << "Warning: multiple KeyframeControllers on the same node" << std::endl; continue; } // build the rotation part manually to avoid issues caused by scaling osg::Matrixf mat; for (int i=0;i<3;++i) for (int j=0;j<3;++j) mat(j,i) = nifNode->trafo.rotation.mValues[i][j]; osg::ref_ptr callback(new KeyframeController(mNif, key->data.getPtr())); setupController(key, callback, animflags); transformNode->addUpdateCallback(callback); seenKeyframeCtrl = true; } } else if (ctrl->recType == Nif::RC_NiVisController) { const Nif::NiVisController* visctrl = static_cast(ctrl.getPtr()); osg::ref_ptr callback(new VisController(visctrl->data.getPtr())); setupController(visctrl, callback, animflags); transformNode->addUpdateCallback(callback); } } } void Loader::handleMaterialControllers(const Nif::Property *materialProperty, osg::Node* node, osg::StateSet *stateset, int animflags) { for (Nif::ControllerPtr ctrl = materialProperty->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiAlphaController) { const Nif::NiAlphaController* alphactrl = static_cast(ctrl.getPtr()); osg::ref_ptr ctrl(new AlphaController(alphactrl->data.getPtr())); setupController(alphactrl, ctrl, animflags); stateset->setDataVariance(osg::StateSet::DYNAMIC); node->addUpdateCallback(ctrl); } else if (ctrl->recType == Nif::RC_NiMaterialColorController) { const Nif::NiMaterialColorController* matctrl = static_cast(ctrl.getPtr()); osg::ref_ptr ctrl(new MaterialColorController(matctrl->data.getPtr())); setupController(matctrl, ctrl, animflags); stateset->setDataVariance(osg::StateSet::DYNAMIC); node->addUpdateCallback(ctrl); } else std::cerr << "Unexpected material controller " << ctrl->recType << std::endl; } } void Loader::handleTextureControllers(const Nif::Property *texProperty, osg::Node* node, osg::StateSet *stateset, int animflags) { for (Nif::ControllerPtr ctrl = texProperty->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiFlipController) { const Nif::NiFlipController* flipctrl = static_cast(ctrl.getPtr()); std::vector > textures; for (unsigned int i=0; imSources.length(); ++i) { Nif::NiSourceTexturePtr st = flipctrl->mSources[i]; if (st.empty()) continue; std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, resourceManager); // tx_creature_werewolf.dds isn't loading in the correct format without this option osgDB::Options* opts = new osgDB::Options; opts->setOptionString("dds_dxt1_detect_rgba"); osgDB::ReaderWriter* reader = osgDB::Registry::instance()->getReaderWriterForExtension("dds"); osgDB::ReaderWriter::ReadResult result = reader->readImage(*resourceManager->get(filename.c_str()), opts); textures.push_back(osg::ref_ptr(result.getImage())); } osg::ref_ptr callback(new FlipController(flipctrl, textures)); setupController(ctrl.getPtr(), callback, animflags); stateset->setDataVariance(osg::StateSet::DYNAMIC); node->addUpdateCallback(callback); } else std::cerr << "Unexpected texture controller " << ctrl->recName << std::endl; } } void Loader::handleParticleSystem(const Nif::Node *nifNode, osg::Group *parentNode, int animflags, int particleflags) { osg::ref_ptr partsys (new ParticleSystem); partsys->setSortMode(osgParticle::ParticleSystem::SORT_BACK_TO_FRONT); const Nif::NiAutoNormalParticlesData *particledata = NULL; if(nifNode->recType == Nif::RC_NiAutoNormalParticles) particledata = static_cast(nifNode)->data.getPtr(); else if(nifNode->recType == Nif::RC_NiRotatingParticles) particledata = static_cast(nifNode)->data.getPtr(); else return; const Nif::NiParticleSystemController* partctrl = NULL; for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if(ctrl->recType == Nif::RC_NiParticleSystemController || ctrl->recType == Nif::RC_NiBSPArrayController) partctrl = static_cast(ctrl.getPtr()); } if (!partctrl) { std::cerr << "No particle controller found " << std::endl; return; } std::vector targets; if (partctrl->recType == Nif::RC_NiBSPArrayController) { getAllNiNodes(partctrl->emitter.getPtr(), targets); } osgParticle::ParticleProcessor::ReferenceFrame rf = (particleflags & Nif::NiNode::ParticleFlag_LocalSpace) ? osgParticle::ParticleProcessor::RELATIVE_RF : osgParticle::ParticleProcessor::ABSOLUTE_RF; // TODO: also take into account the transform by placement in the scene osg::Matrix particletransform; if (rf == osgParticle::ParticleProcessor::ABSOLUTE_RF) particletransform = getWorldTransform(nifNode); int i=0; for (std::vector::const_iterator it = partctrl->particles.begin(); iactiveCount && it != partctrl->particles.end(); ++it, ++i) { const Nif::NiParticleSystemController::Particle& particle = *it; ParticleAgeSetter particletemplate(std::max(0.f, particle.lifetime)); osgParticle::Particle* created = partsys->createParticle(&particletemplate); created->setLifeTime(std::max(0.f, particle.lifespan)); osg::Vec4f adjustedVelocity = osg::Vec4f(particle.velocity, 0.f) * particletransform; created->setVelocity(osg::Vec3f(adjustedVelocity.x(), adjustedVelocity.y(), adjustedVelocity.z())); created->setPosition(particledata->vertices.at(particle.vertex) * particletransform); osg::Vec4f partcolor (1.f,1.f,1.f,1.f); if (particle.vertex < int(particledata->colors.size())) partcolor = particledata->colors.at(particle.vertex); float size = particledata->sizes.at(particle.vertex) * partctrl->size; created->setSizeRange(osgParticle::rangef(size, size)); } partsys->setQuota(partctrl->numParticles); partsys->getDefaultParticleTemplate().setSizeRange(osgParticle::rangef(partctrl->size, partctrl->size)); partsys->getDefaultParticleTemplate().setColorRange(osgParticle::rangev4(osg::Vec4f(1.f,1.f,1.f,1.f), osg::Vec4f(1.f,1.f,1.f,1.f))); partsys->getDefaultParticleTemplate().setAlphaRange(osgParticle::rangef(1.f, 1.f)); // ---- emitter osg::ref_ptr emitter = new Emitter(targets); emitter->setParticleSystem(partsys); emitter->setReferenceFrame(osgParticle::ParticleProcessor::RELATIVE_RF); osgParticle::ConstantRateCounter* counter = new osgParticle::ConstantRateCounter; if (partctrl->emitFlags & Nif::NiParticleSystemController::NoAutoAdjust) counter->setNumberOfParticlesPerSecondToCreate(partctrl->emitRate); else counter->setNumberOfParticlesPerSecondToCreate(partctrl->numParticles / (partctrl->lifetime + partctrl->lifetimeRandom/2)); emitter->setCounter(counter); ParticleShooter* shooter = new ParticleShooter(partctrl->velocity - partctrl->velocityRandom*0.5f, partctrl->velocity + partctrl->velocityRandom*0.5f, partctrl->horizontalDir, partctrl->horizontalAngle, partctrl->verticalDir, partctrl->verticalAngle, partctrl->lifetime, partctrl->lifetimeRandom); emitter->setShooter(shooter); osgParticle::BoxPlacer* placer = new osgParticle::BoxPlacer; placer->setXRange(-partctrl->offsetRandom.x(), partctrl->offsetRandom.x()); placer->setYRange(-partctrl->offsetRandom.y(), partctrl->offsetRandom.y()); placer->setZRange(-partctrl->offsetRandom.z(), partctrl->offsetRandom.z()); emitter->setPlacer(placer); // Note: we assume that the Emitter node is placed *before* the Particle node in the scene graph. // This seems to be true for all NIF files in the game that I've checked, suggesting that NIFs work similar to OSG with regards to update order. // If something ever violates this assumption, the worst that could happen is the culling being one frame late, which wouldn't be a disaster. FindRecIndexVisitor find (partctrl->emitter->recIndex); mRootNode->accept(find); if (!find.mFound) { std::cerr << "can't find emitter node, wrong node order?" << std::endl; return; } osg::Group* emitterNode = find.mFound; // Emitter attached to the emitter node. Note one side effect of the emitter using the CullVisitor is that hiding its node // actually causes the emitter to stop firing. Convenient, because MW behaves this way too! emitterNode->addChild(emitter); osg::ref_ptr callback(new ParticleSystemController(partctrl)); setupController(partctrl, callback, animflags); emitter->setUpdateCallback(callback); // ----------- affector (must be after emitters in the scene graph) osgParticle::ModularProgram* program = new osgParticle::ModularProgram; program->setParticleSystem(partsys); program->setReferenceFrame(rf); emitterNode->addChild(program); for (Nif::ExtraPtr e = partctrl->extra; !e.empty(); e = e->extra) { if (e->recType == Nif::RC_NiParticleGrowFade) { const Nif::NiParticleGrowFade *gf = static_cast(e.getPtr()); GrowFadeAffector* affector = new GrowFadeAffector(gf->growTime, gf->fadeTime); program->addOperator(affector); } else if (e->recType == Nif::RC_NiGravity) { const Nif::NiGravity* gr = static_cast(e.getPtr()); GravityAffector* affector = new GravityAffector(gr); program->addOperator(affector); } else if (e->recType == Nif::RC_NiParticleColorModifier) { const Nif::NiParticleColorModifier *cl = static_cast(e.getPtr()); const Nif::NiColorData *clrdata = cl->data.getPtr(); ParticleColorAffector* affector = new ParticleColorAffector(clrdata); program->addOperator(affector); } else if (e->recType == Nif::RC_NiParticleRotation) { // TODO: Implement? } else std::cerr << "Unhandled particle modifier " << e->recName << std::endl; } // ----------- osg::ref_ptr geode (new osg::Geode); geode->addDrawable(partsys); std::vector materialProps; collectMaterialProperties(nifNode, materialProps); applyMaterialProperties(geode, materialProps, true, animflags); partsys->getOrCreateStateSet()->setMode(GL_LIGHTING, osg::StateAttribute::OFF); partsys->getOrCreateStateSet()->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); if (rf == osgParticle::ParticleProcessor::RELATIVE_RF) parentNode->addChild(geode); else { osg::MatrixTransform* trans = new osg::MatrixTransform; trans->setUpdateCallback(new InverseWorldMatrix); trans->addChild(geode); parentNode->addChild(trans); } // particle system updater (after the emitters and affectors in the scene graph) osgParticle::ParticleSystemUpdater* updater = new osgParticle::ParticleSystemUpdater; updater->addParticleSystem(partsys); parentNode->addChild(updater); } void Loader::triShapeToGeometry(const Nif::NiTriShape *triShape, osg::Geometry *geometry, osg::Geode* parentGeode, const std::map& boundTextures, int animflags) { const Nif::NiTriShapeData* data = triShape->data.getPtr(); const Nif::NiSkinInstance *skin = (triShape->skin.empty() ? NULL : triShape->skin.getPtr()); if (skin) { // Convert vertices and normals to bone space from bind position. It would be // better to transform the bones into bind position, but there doesn't seem to // be a reliable way to do that. osg::ref_ptr newVerts (new osg::Vec3Array(data->vertices.size())); osg::ref_ptr newNormals (new osg::Vec3Array(data->normals.size())); const Nif::NiSkinData *skinData = skin->data.getPtr(); const Nif::NodeList &bones = skin->bones; for(size_t b = 0;b < bones.length();b++) { osg::Matrixf mat = toMatrix(skinData->bones[b].trafo); mat = mat * getWorldTransform(bones[b].getPtr()); const std::vector &weights = skinData->bones[b].weights; for(size_t i = 0;i < weights.size();i++) { size_t index = weights[i].vertex; float weight = weights[i].weight; osg::Vec4f mult = (osg::Vec4f(data->vertices.at(index),1.f) * mat) * weight; (*newVerts)[index] += osg::Vec3f(mult.x(),mult.y(),mult.z()); if(newNormals->size() > index) { osg::Vec4 normal(data->normals[index].x(), data->normals[index].y(), data->normals[index].z(), 0.f); normal = (normal * mat) * weight; (*newNormals)[index] += osg::Vec3f(normal.x(),normal.y(),normal.z()); } } } // Interpolating normalized normals doesn't necessarily give you a normalized result // Currently we're using GL_NORMALIZE, so this isn't needed //for (unsigned int i=0;isize();++i) // (*newNormals)[i].normalize(); geometry->setVertexArray(newVerts); if (!data->normals.empty()) geometry->setNormalArray(newNormals, osg::Array::BIND_PER_VERTEX); } else { geometry->setVertexArray(new osg::Vec3Array(data->vertices.size(), &data->vertices[0])); if (!data->normals.empty()) geometry->setNormalArray(new osg::Vec3Array(data->normals.size(), &data->normals[0]), osg::Array::BIND_PER_VERTEX); } for (std::map::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it) { int textureStage = it->first; int uvSet = it->second; if (uvSet >= (int)data->uvlist.size()) { // Occurred in "ascendedsleeper.nif", but only for hidden Shadow nodes, apparently //std::cerr << "Warning: using an undefined UV set " << uvSet << " on TriShape " << triShape->name << std::endl; continue; } geometry->setTexCoordArray(textureStage, new osg::Vec2Array(data->uvlist[uvSet].size(), &data->uvlist[uvSet][0]), osg::Array::BIND_PER_VERTEX); } if (!data->colors.empty()) geometry->setColorArray(new osg::Vec4Array(data->colors.size(), &data->colors[0]), osg::Array::BIND_PER_VERTEX); geometry->addPrimitiveSet(new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES, data->triangles.size(), (unsigned short*)&data->triangles[0])); // osg::Material properties are handled here for two reasons: // - if there are no vertex colors, we need to disable colorMode. // - there are 3 "overlapping" nif properties that all affect the osg::Material, handling them // above the actual renderable would be tedious. std::vector materialProps; collectMaterialProperties(triShape, materialProps); applyMaterialProperties(parentGeode, materialProps, !data->colors.empty(), animflags); } void Loader::handleTriShape(const Nif::NiTriShape* triShape, osg::Group* parentNode, const std::map& boundTextures, int animflags) { osg::ref_ptr geometry; if(!triShape->controller.empty()) { Nif::ControllerPtr ctrl = triShape->controller; do { if(ctrl->recType == Nif::RC_NiGeomMorpherController && ctrl->flags & Nif::NiNode::ControllerFlag_Active) { geometry = handleMorphGeometry(static_cast(ctrl.getPtr())); osg::ref_ptr morphctrl = new GeomMorpherController( static_cast(ctrl.getPtr())->data.getPtr()); setupController(ctrl.getPtr(), morphctrl, animflags); geometry->setUpdateCallback(morphctrl); break; } } while(!(ctrl=ctrl->next).empty()); } if (!geometry.get()) geometry = new osg::Geometry; osg::ref_ptr geode (new osg::Geode); geode->setName(triShape->name); // name will be used for part filtering triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags); geode->addDrawable(geometry); parentNode->addChild(geode); } void Loader::handleSkinnedTriShape(const Nif::NiTriShape *triShape, osg::Group *parentNode, const std::map& boundTextures, int animflags) { osg::ref_ptr geode (new osg::Geode); geode->setName(triShape->name); // name will be used for part filtering osg::ref_ptr geometry (new osg::Geometry); triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags); osg::ref_ptr rig(new osgAnimation::RigGeometry); rig->setSourceGeometry(geometry); // Slightly expand the bounding box to account for movement of the bones // For more accuracy the skinning should be relative to the parent of the first skinned bone, // rather than the root bone. osg::BoundingBox box = geometry->getBound(); box.expandBy(box._min-(box._max-box._min)/2); box.expandBy(box._max+(box._max-box._min)/2); rig->setInitialBound(box); const Nif::NiSkinInstance *skin = triShape->skin.getPtr(); // Assign bone weights osg::ref_ptr map (new osgAnimation::VertexInfluenceMap); const Nif::NiSkinData *data = skin->data.getPtr(); const Nif::NodeList &bones = skin->bones; for(size_t i = 0;i < bones.length();i++) { std::string boneName = bones[i].getPtr()->name; osgAnimation::VertexInfluence influence; influence.setName(boneName); const std::vector &weights = data->bones[i].weights; influence.reserve(weights.size()); for(size_t j = 0;j < weights.size();j++) { osgAnimation::VertexIndexWeight indexWeight = std::make_pair(weights[j].vertex, weights[j].weight); influence.push_back(indexWeight); } map->insert(std::make_pair(boneName, influence)); } rig->setInfluenceMap(map); osg::ref_ptr trans(new osg::MatrixTransform); trans->setUpdateCallback(new InvertBoneMatrix()); geode->addDrawable(rig); trans->addChild(geode); parentNode->addChild(trans); } void Loader::handleProperty(const Nif::Property *property, const Nif::Node* nifNode, osg::Node *node, std::map& boundTextures, int animflags) { osg::StateSet* stateset = node->getOrCreateStateSet(); switch (property->recType) { case Nif::RC_NiStencilProperty: { const Nif::NiStencilProperty* stencilprop = static_cast(property); osg::FrontFace* frontFace = new osg::FrontFace; switch (stencilprop->data.drawMode) { case 1: frontFace->setMode(osg::FrontFace::CLOCKWISE); break; case 0: case 2: default: frontFace->setMode(osg::FrontFace::COUNTER_CLOCKWISE); break; } stateset->setAttribute(frontFace, osg::StateAttribute::ON); stateset->setMode(GL_CULL_FACE, stencilprop->data.drawMode == 3 ? osg::StateAttribute::OFF : osg::StateAttribute::ON); // Stencil settings not enabled yet, not sure if the original engine is actually using them, // since they might conflict with Morrowind's stencil shadows. /* osg::Stencil* stencil = new osg::Stencil; stencil->setFunction(func, stencilprop->data.stencilRef, stencilprop->data.stencilMask); stateset->setMode(GL_STENCIL_TEST, stencilprop->data.enabled != 0 ? osg::StateAttribute::ON : osg::StateAttribute::OFF); */ } case Nif::RC_NiWireframeProperty: { const Nif::NiWireframeProperty* wireprop = static_cast(property); osg::PolygonMode* mode = new osg::PolygonMode; mode->setMode(osg::PolygonMode::FRONT_AND_BACK, wireprop->flags == 0 ? osg::PolygonMode::FILL : osg::PolygonMode::LINE); stateset->setAttributeAndModes(mode, osg::StateAttribute::ON); break; } case Nif::RC_NiZBufferProperty: { const Nif::NiZBufferProperty* zprop = static_cast(property); // VER_MW doesn't support a DepthFunction according to NifSkope osg::Depth* depth = new osg::Depth; depth->setWriteMask((zprop->flags>>1)&1); stateset->setAttributeAndModes(depth, osg::StateAttribute::ON); break; } // OSG groups the material properties that NIFs have separate, so we have to parse them all again when one changed case Nif::RC_NiMaterialProperty: case Nif::RC_NiVertexColorProperty: case Nif::RC_NiSpecularProperty: { // Handled in handleTriShape so we know whether vertex colors are available break; } case Nif::RC_NiAlphaProperty: { const Nif::NiAlphaProperty* alphaprop = static_cast(property); osg::BlendFunc* blendfunc = new osg::BlendFunc; if (alphaprop->flags&1) { blendfunc->setFunction(getBlendMode((alphaprop->flags>>1)&0xf), getBlendMode((alphaprop->flags>>5)&0xf)); stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::ON); bool noSort = (alphaprop->flags>>13)&1; if (!noSort) { stateset->setNestRenderBins(false); stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); } } else { stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::OFF); stateset->setNestRenderBins(false); stateset->setRenderingHint(osg::StateSet::OPAQUE_BIN); } osg::AlphaFunc* alphafunc = new osg::AlphaFunc; if((alphaprop->flags>>9)&1) { alphafunc->setFunction(getTestMode((alphaprop->flags>>10)&0x7), alphaprop->data.threshold/255.f); stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::ON); } else stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::OFF); break; } case Nif::RC_NiTexturingProperty: { const Nif::NiTexturingProperty* texprop = static_cast(property); for (int i=0; itextures[i].inUse) { if (i != Nif::NiTexturingProperty::BaseTexture && i != Nif::NiTexturingProperty::GlowTexture && i != Nif::NiTexturingProperty::DarkTexture && i != Nif::NiTexturingProperty::DetailTexture) { std::cerr << "Warning: unhandled texture stage " << i << std::endl; continue; } const Nif::NiTexturingProperty::Texture& tex = texprop->textures[i]; if(tex.texture.empty()) { std::cerr << "Warning: texture layer " << i << " is in use but empty " << std::endl; continue; } const Nif::NiSourceTexture *st = tex.texture.getPtr(); if (!st->external) { std::cerr << "Warning: unhandled internal texture " << std::endl; continue; } std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, resourceManager); // tx_creature_werewolf.dds isn't loading in the correct format without this option osgDB::Options* opts = new osgDB::Options; opts->setOptionString("dds_dxt1_detect_rgba"); osgDB::ReaderWriter* reader = osgDB::Registry::instance()->getReaderWriterForExtension("dds"); osgDB::ReaderWriter::ReadResult result = reader->readImage(*resourceManager->get(filename.c_str()), opts); osg::Image* image = result.getImage(); osg::Texture2D* texture2d = new osg::Texture2D; texture2d->setUnRefImageDataAfterApply(true); texture2d->setImage(image); unsigned int clamp = static_cast(tex.clamp); int wrapT = (clamp) & 0x1; int wrapS = (clamp >> 1) & 0x1; texture2d->setWrap(osg::Texture::WRAP_S, wrapS ? osg::Texture::REPEAT : osg::Texture::CLAMP); texture2d->setWrap(osg::Texture::WRAP_T, wrapT ? osg::Texture::REPEAT : osg::Texture::CLAMP); stateset->setTextureAttributeAndModes(i, texture2d, osg::StateAttribute::ON); if (i == Nif::NiTexturingProperty::GlowTexture) { osg::TexEnv* texEnv = new osg::TexEnv; texEnv->setMode(osg::TexEnv::ADD); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } else if (i == Nif::NiTexturingProperty::DarkTexture) { // untested osg::TexEnv* texEnv = new osg::TexEnv; texEnv->setMode(osg::TexEnv::MODULATE); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } else if (i == Nif::NiTexturingProperty::DetailTexture) { // untested osg::TexEnvCombine* texEnv = new osg::TexEnvCombine; texEnv->setScale_RGB(2.f); texEnv->setCombine_Alpha(GL_MODULATE); texEnv->setOperand0_Alpha(GL_SRC_ALPHA); texEnv->setOperand1_Alpha(GL_SRC_ALPHA); texEnv->setSource0_Alpha(GL_PREVIOUS); texEnv->setSource1_Alpha(GL_TEXTURE); texEnv->setCombine_RGB(GL_MODULATE); texEnv->setOperand0_RGB(GL_SRC_COLOR); texEnv->setOperand1_RGB(GL_SRC_COLOR); texEnv->setSource0_RGB(GL_PREVIOUS); texEnv->setSource1_RGB(GL_TEXTURE); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } boundTextures[i] = tex.uvSet; } else if (boundTextures.find(i) != boundTextures.end()) { stateset->setTextureAttributeAndModes(i, new osg::Texture2D, osg::StateAttribute::OFF); boundTextures.erase(i); } handleTextureControllers(texprop, node, stateset, animflags); } break; } case Nif::RC_NiDitherProperty: { stateset->setMode(GL_DITHER, property->flags != 0 ? osg::StateAttribute::ON : osg::StateAttribute::OFF); break; } default: std::cerr << "Unhandled " << property->recName << std::endl; break; } } void Loader::applyMaterialProperties(osg::Node* node, const std::vector& properties, bool hasVertexColors, int animflags) { osg::StateSet* stateset = node->getOrCreateStateSet(); int specFlags = 0; // Specular is disabled by default, even if there's a specular color in the NiMaterialProperty osg::Material* mat = new osg::Material; mat->setColorMode(hasVertexColors ? osg::Material::AMBIENT_AND_DIFFUSE : osg::Material::OFF); // TODO: check if the OpenGL default material values are actually the default NIF material values, for when there's no NiMaterialProperty for (std::vector::const_reverse_iterator it = properties.rbegin(); it != properties.rend(); ++it) { const Nif::Property* property = *it; switch (property->recType) { case Nif::RC_NiSpecularProperty: { specFlags = property->flags; break; } case Nif::RC_NiMaterialProperty: { const Nif::NiMaterialProperty* matprop = static_cast(property); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.diffuse, matprop->data.alpha)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.ambient, 1.f)); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.emissive, 1.f)); mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.specular, 1.f)); mat->setShininess(osg::Material::FRONT_AND_BACK, matprop->data.glossiness); if (!matprop->controller.empty()) handleMaterialControllers(matprop, node, stateset, animflags); break; } case Nif::RC_NiVertexColorProperty: { const Nif::NiVertexColorProperty* vertprop = static_cast(property); if (!hasVertexColors) break; switch (vertprop->flags) { case 0: mat->setColorMode(osg::Material::OFF); break; case 1: mat->setColorMode(osg::Material::EMISSION); break; case 2: mat->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE); break; } } } } if (specFlags == 0) mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f,0.f,0.f,0.f)); stateset->setAttributeAndModes(mat, osg::StateAttribute::ON); } }