#include "buffercache.hpp" #include #include #include "defs.hpp" namespace { template osg::ref_ptr createIndexBuffer(unsigned int flags, unsigned int verts) { // LOD level n means every 2^n-th vertex is kept, but we currently handle LOD elsewhere. size_t lodLevel = 0; //(flags >> (4*4)); size_t lodDeltas[4]; for (int i = 0; i < 4; ++i) lodDeltas[i] = (flags >> (4 * i)) & (0xf); bool anyDeltas = (lodDeltas[Terrain::North] || lodDeltas[Terrain::South] || lodDeltas[Terrain::West] || lodDeltas[Terrain::East]); size_t increment = static_cast(1) << lodLevel; assert(increment < verts); osg::ref_ptr indices(new IndexArrayType(osg::PrimitiveSet::TRIANGLES)); indices->reserve((verts - 1) * (verts - 1) * 2 * 3 / increment); size_t rowStart = 0, colStart = 0, rowEnd = verts - 1, colEnd = verts - 1; // If any edge needs stitching we'll skip all edges at this point, // mainly because stitching one edge would have an effect on corners and on the adjacent edges if (anyDeltas) { colStart += increment; colEnd -= increment; rowEnd -= increment; rowStart += increment; } for (size_t row = rowStart; row < rowEnd; row += increment) { for (size_t col = colStart; col < colEnd; col += increment) { // diamond pattern if ((row + col % 2) % 2 == 1) { indices->push_back(verts * (col + increment) + row); indices->push_back(verts * (col + increment) + row + increment); indices->push_back(verts * col + row + increment); indices->push_back(verts * col + row); indices->push_back(verts * (col + increment) + row); indices->push_back(verts * (col) + row + increment); } else { indices->push_back(verts * col + row); indices->push_back(verts * (col + increment) + row + increment); indices->push_back(verts * col + row + increment); indices->push_back(verts * col + row); indices->push_back(verts * (col + increment) + row); indices->push_back(verts * (col + increment) + row + increment); } } } size_t innerStep = increment; if (anyDeltas) { // Now configure LOD transitions at the edges - this is pretty tedious, // and some very long and boring code, but it works great // South size_t row = 0; size_t outerStep = static_cast(1) << (lodDeltas[Terrain::South] + lodLevel); for (size_t col = 0; col < verts - 1; col += outerStep) { indices->push_back(verts * col + row); indices->push_back(verts * (col + outerStep) + row); // Make sure not to touch the right edge if (col + outerStep == verts - 1) indices->push_back(verts * (col + outerStep - innerStep) + row + innerStep); else indices->push_back(verts * (col + outerStep) + row + innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col + i == 0 || col + i == verts - 1 - innerStep) continue; indices->push_back(verts * (col) + row); indices->push_back(verts * (col + i + innerStep) + row + innerStep); indices->push_back(verts * (col + i) + row + innerStep); } } // North row = verts - 1; outerStep = size_t(1) << (lodDeltas[Terrain::North] + lodLevel); for (size_t col = 0; col < verts - 1; col += outerStep) { indices->push_back(verts * (col + outerStep) + row); indices->push_back(verts * col + row); // Make sure not to touch the left edge if (col == 0) indices->push_back(verts * (col + innerStep) + row - innerStep); else indices->push_back(verts * col + row - innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col + i == 0 || col + i == verts - 1 - innerStep) continue; indices->push_back(verts * (col + i) + row - innerStep); indices->push_back(verts * (col + i + innerStep) + row - innerStep); indices->push_back(verts * (col + outerStep) + row); } } // West size_t col = 0; outerStep = size_t(1) << (lodDeltas[Terrain::West] + lodLevel); for (row = 0; row < verts - 1; row += outerStep) { indices->push_back(verts * col + row + outerStep); indices->push_back(verts * col + row); // Make sure not to touch the top edge if (row + outerStep == verts - 1) indices->push_back(verts * (col + innerStep) + row + outerStep - innerStep); else indices->push_back(verts * (col + innerStep) + row + outerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row + i == 0 || row + i == verts - 1 - innerStep) continue; indices->push_back(verts * col + row); indices->push_back(verts * (col + innerStep) + row + i); indices->push_back(verts * (col + innerStep) + row + i + innerStep); } } // East col = verts - 1; outerStep = size_t(1) << (lodDeltas[Terrain::East] + lodLevel); for (row = 0; row < verts - 1; row += outerStep) { indices->push_back(verts * col + row); indices->push_back(verts * col + row + outerStep); // Make sure not to touch the bottom edge if (row == 0) indices->push_back(verts * (col - innerStep) + row + innerStep); else indices->push_back(verts * (col - innerStep) + row); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row + i == 0 || row + i == verts - 1 - innerStep) continue; indices->push_back(verts * col + row + outerStep); indices->push_back(verts * (col - innerStep) + row + i + innerStep); indices->push_back(verts * (col - innerStep) + row + i); } } } return indices; } } namespace Terrain { osg::ref_ptr BufferCache::getUVBuffer(unsigned int numVerts) { std::lock_guard lock(mUvBufferMutex); if (mUvBufferMap.find(numVerts) != mUvBufferMap.end()) { return mUvBufferMap[numVerts]; } int vertexCount = numVerts * numVerts; osg::ref_ptr uvs(new osg::Vec2Array(osg::Array::BIND_PER_VERTEX)); uvs->reserve(vertexCount); for (unsigned int col = 0; col < numVerts; ++col) { for (unsigned int row = 0; row < numVerts; ++row) { uvs->push_back(osg::Vec2f( col / static_cast(numVerts - 1), ((numVerts - 1) - row) / static_cast(numVerts - 1))); } } // Assign a VBO here to enable state sharing between different Geometries. uvs->setVertexBufferObject(new osg::VertexBufferObject); mUvBufferMap[numVerts] = uvs; return uvs; } osg::ref_ptr BufferCache::getIndexBuffer(unsigned int numVerts, unsigned int flags) { std::pair id = std::make_pair(numVerts, flags); std::lock_guard lock(mIndexBufferMutex); if (mIndexBufferMap.find(id) != mIndexBufferMap.end()) { return mIndexBufferMap[id]; } osg::ref_ptr buffer; if (numVerts * numVerts <= (0xffffu)) buffer = createIndexBuffer(flags, numVerts); else buffer = createIndexBuffer(flags, numVerts); // Assign a EBO here to enable state sharing between different Geometries. buffer->setElementBufferObject(new osg::ElementBufferObject); mIndexBufferMap[id] = buffer; return buffer; } void BufferCache::clearCache() { { std::lock_guard lock(mIndexBufferMutex); mIndexBufferMap.clear(); } { std::lock_guard lock(mUvBufferMutex); mUvBufferMap.clear(); } } void BufferCache::releaseGLObjects(osg::State* state) { { std::lock_guard lock(mIndexBufferMutex); for (const auto& [_, indexbuffer] : mIndexBufferMap) indexbuffer->releaseGLObjects(state); } { std::lock_guard lock(mUvBufferMutex); for (const auto& [_, uvbuffer] : mUvBufferMap) uvbuffer->releaseGLObjects(state); } } }