1
0
mirror of https://gitlab.com/OpenMW/openmw.git synced 2025-01-26 09:35:28 +00:00

reworked Nif::KeyListT into Nif::CurveT

Renamed Nif:KeyListT to Nif::CurveT, moved it into its own file and
changed its implementation so that on compatible platforms, the entire
array of key-frames can be read in a single read call. Added a helper
class called Nif::CurveT::interpolator to allow other code to easily
evaluate the curve. Reworked part of the skeletonLoader code to use
the interpolator to simplify its own logic.
This commit is contained in:
Nathan Jeffords 2013-01-05 22:51:06 -08:00
parent 03ee7663a3
commit e7665582ad
5 changed files with 481 additions and 256 deletions

424
components/nif/curve.hpp Normal file
View File

@ -0,0 +1,424 @@
#ifndef _NIF_KEYLIST_H_
#define _NIF_KEYLIST_H_
#include <cfloat>
namespace Nif
{
template <typename iterator , typename predicate>
void bubble_sort (iterator begin, iterator end, predicate const & in_order)
{
if (end > begin)
{
for (iterator i = begin; i != end - 1; ++i)
{
if (in_order (*(i+0), *(i+1)))
continue;
for (iterator j = i; j >= begin; --j)
{
std::swap (*(j+0), *(j+1));
if (in_order (*(j+0), *(j+1)))
break;
}
}
}
}
template <typename value_type>
value_type linear_interpolate (float amount, value_type prev, value_type next)
{
return prev + (next - prev) * amount;
}
inline
Ogre::Quaternion linear_interpolate (float amount, Ogre::Quaternion prev, Ogre::Quaternion next)
{
return Ogre::Quaternion::nlerp (amount, prev, next);
}
template<typename value_type>
struct KeyT {
static const size_t EncodedLength =
NIFStream::handler <float>::EncodedLength +
NIFStream::handler <value_type>::EncodedLength
;
float mTime;
value_type mValue;
void extract (NIFStream &nif)
{
nif.uncheckedRead (mTime);
nif.uncheckedRead (mValue);
}
static bool in_order (KeyT <value_type> const & l, KeyT <value_type> const & r)
{
return l.mTime < r.mTime;
}
template <typename derived_type>
struct NIFStream_handler
{
static const bool FixedLength = true;
static const size_t EncodedLength = derived_type::EncodedLength;
static const bool FileCompatibleLayout = true;
static void extract (NIFStream& Stream, KeyT <value_type> & Value)
{
static_cast <derived_type &> (Value).extract (Stream);
}
};
};
template <typename T>
struct LinearKeyT : KeyT <T>
{
static T interpolate (LinearKeyT <T> * prev, LinearKeyT <T> * next, float amount)
{
return linear_interpolate (amount, prev->mValue, next->mValue);
}
};
template <typename T>
struct QuadraticKeyT : KeyT <T>
{
static const size_t EncodedLength =
KeyT <T>::EncodedLength +
NIFStream::handler <T>::EncodedLength * 2
;
T mForwardValue;
T mBackwardValue;
static T interpolate (QuadraticKeyT <T> * prev, QuadraticKeyT <T> * next, float amount)
{
return linear_interpolate (amount, prev->mValue, next->mValue);
}
void extract (NIFStream &nif)
{
KeyT<T>::extract (nif);
nif.uncheckedRead (mForwardValue);
nif.uncheckedRead (mBackwardValue);
}
};
template <typename T>
struct TbcKeyT : KeyT <T>
{
static const size_t EncodedLength =
KeyT <T>::EncodedLength +
NIFStream::handler <float>::EncodedLength * 3
;
float mTension;
float mBias;
float mContinuity;
static T interpolate (TbcKeyT <T> * prev, TbcKeyT <T> * next, float amount)
{
return linear_interpolate (amount, prev->mValue, next->mValue);
}
void extract (NIFStream &nif)
{
KeyT<T>::extract (nif);
nif.uncheckedRead (mTension);
nif.uncheckedRead (mBias);
nif.uncheckedRead (mContinuity);
}
};
// register NIFStream extraction handlers for KeyT derivatives
template <typename T> struct NIFStream::handler < LinearKeyT <T> > : KeyT <T>::template NIFStream_handler < LinearKeyT <T> > {};
template <typename T> struct NIFStream::handler < QuadraticKeyT <T> > : KeyT <T>::template NIFStream_handler < QuadraticKeyT <T> > {};
template <typename T> struct NIFStream::handler < TbcKeyT <T> > : KeyT <T>::template NIFStream_handler < TbcKeyT <T> > {};
struct Curve
{
static const int sLinearInterpolation = 1;
static const int sQuadraticInterpolation = 2;
static const int sTBCInterpolation = 3;
};
template<typename value_type>
struct CurveT : Curve {
typedef KeyT <value_type> BaseKey;
typedef TbcKeyT <value_type> TcbKey;
typedef LinearKeyT <value_type> LinearKey;
typedef QuadraticKeyT <value_type> QuadraticKey;
union keys {
LinearKey* Linear;
QuadraticKey* Quadratic;
TcbKey* Tcb;
};
class interpolator;
int mInterpolationType;
size_t mSize;
keys mKeys;
value_type sample (float time) const;
KeyT <value_type> const * const & keyAtIndex (size_t Index) const
{
switch (mInterpolationType)
{
case sLinearInterpolation: return mKeys.Linear + Index;
case sQuadraticInterpolation: return mKeys.Quadratic + Index;
case sTBCInterpolation: return mKeys.Tcb + Index;
}
}
void read(NIFStream *nif, bool force=false)
{
size_t count = nif->getInt();
mSize = 0;
if(count > 0 || force)
{
mInterpolationType = nif->getInt();
assert (mInterpolationType >= sLinearInterpolation && mInterpolationType <= sTBCInterpolation);
if (count > 0)
{
if(mInterpolationType == sLinearInterpolation)
read_keys (nif, mKeys.Linear, count);
else if(mInterpolationType == sQuadraticInterpolation)
read_keys (nif, mKeys.Quadratic, count);
else if(mInterpolationType == sTBCInterpolation)
read_keys (nif, mKeys.Tcb, count);
else
nif->file->warn("Unhandled interpolation type: "+Ogre::StringConverter::toString(mInterpolationType));
}
}
else
mInterpolationType = sLinearInterpolation;
}
CurveT () { init (); }
CurveT (CurveT <value_type> const & k) { init (k); }
//CurveT (CurveT <value_type> && k) { init (); swap (std::move (k)); }
~CurveT () { dest (); }
operator bool () const { return mSize > 0; }
//void operator = (CurveT<value_type> && k) { swap(k); }
void operator = (CurveT<value_type> const & k) { dest (); init (k); }
void swap (CurveT<value_type> & k)
{
std::swap (mSize, k.mSize);
std::swap (mInterpolationType, k.mInterpolationType);
std::swap (mKeys, k.mKeys);
}
private:
void init ()
{
mSize = 0;
}
void init (CurveT<value_type> const & k)
{
mInterpolationType = k.mInterpolationType;
switch (mInterpolationType)
{
default:
case sLinearInterpolation:
mKeys.Linear = new LinearKey [k.mSize];
memcpy (mKeys.Linear, k.mKeys.Linear, sizeof (LinearKey) * k.mSize);
mSize = k.mSize;
break;
case sQuadraticInterpolation:
mKeys.Quadratic = new QuadraticKey [k.mSize];
memcpy (mKeys.Quadratic, k.mKeys.Quadratic, sizeof (QuadraticKey) * k.mSize);
mSize = k.mSize;
break;
case sTBCInterpolation:
mKeys.Tcb = new TcbKey [k.mSize];
memcpy (mKeys.Tcb, k.mKeys.Tcb, sizeof (TcbKey) * k.mSize);
mSize = k.mSize;
break;
}
}
void dest ()
{
if (mSize > 0)
{
switch (mInterpolationType)
{
case sLinearInterpolation: delete mKeys.Linear; break;
case sQuadraticInterpolation: delete mKeys.Quadratic; break;
case sTBCInterpolation: delete mKeys.Tcb; break;
}
}
}
template <typename T>
void read_keys (NIFStream *nif, T * & store, size_t count)
{
store = new T [count];
mSize = count;
nif->getArray (store, count);
//NOTE: Is this really necessary? It seems reasonable to assume that
// animation data is already sorted by time...
// verified no out of order frames in GOTY edition
bubble_sort (store, store+count, T::in_order);
}
};
template<typename value_type>
class CurveT<value_type>::interpolator
{
template <typename key_type>
struct impl
{
key_type *Cur, *End;
void init (key_type * Beg, size_t Len)
{
if (Len > 0)
{
Cur = Beg;
End = Beg + Len - 1;
}
else
{
Cur = End = NULL;
}
}
bool hasData () const
{
return Cur && Cur <= End;
}
value_type valueAt (float time)
{
while ((Cur < End) && (time >= Cur [1].mTime))
++Cur;
if (Cur < End)
{
if (time > Cur->mTime)
{
key_type * Nxt = Cur + 1;
float offset = time - Cur->mTime;
float length = Nxt->mTime - Cur->mTime;
return key_type::interpolate (Cur, Nxt, offset / length);
}
else
return Cur->mValue;
}
else
return End->mValue;
}
float curTime () const
{
return (Cur != NULL) ? Cur->Time : FLT_MIN;
}
float nextTime () const
{
return Cur < End ? (Cur + 1)->mTime : FLT_MAX;
}
};
public:
int mInterpolationType;
union {
impl <LinearKey> Linear;
impl <QuadraticKey> Quadratic;
impl <TcbKey> Tcb;
};
interpolator (CurveT <value_type> const & Curve)
{
mInterpolationType = Curve.mInterpolationType;
switch (mInterpolationType)
{
default:
case Curve::sLinearInterpolation: Linear .init (Curve.mKeys.Linear, Curve.mSize); break;
case Curve::sQuadraticInterpolation: Quadratic.init (Curve.mKeys.Quadratic, Curve.mSize); break;
case Curve::sTBCInterpolation: Tcb .init (Curve.mKeys.Tcb, Curve.mSize); break;
}
}
// return true if there is any value(s) in this curve
float hasData () const
{
switch (mInterpolationType)
{
default:
case Curve::sLinearInterpolation: return Linear .hasData ();
case Curve::sQuadraticInterpolation: return Quadratic.hasData ();
case Curve::sTBCInterpolation: return Tcb .hasData ();
}
}
// return the timestamp of the next key-frame, or FLT_MAX if
// there are no more key-frames, valid if hasData returns false
float nextTime () const
{
switch (mInterpolationType)
{
default:
case Curve::sLinearInterpolation: return Linear .nextTime ();
case Curve::sQuadraticInterpolation: return Quadratic.nextTime ();
case Curve::sTBCInterpolation: return Tcb .nextTime ();
}
}
// return the value of the curve at the specified time
// the passed in time should never exceed the result of
// nextTime, not valid if hasData returns false
value_type valueAt (float time)
{
switch (mInterpolationType)
{
default:
case Curve::sLinearInterpolation: return Linear .valueAt (time);
case Curve::sQuadraticInterpolation: return Quadratic.valueAt (time);
case Curve::sTBCInterpolation: return Tcb .valueAt (time);
}
}
};
template<typename value_type>
value_type CurveT<value_type>::sample (float time) const
{
interpolator i (*this);
return i.valueAt (time);
}
typedef CurveT<float> FloatCurve;
typedef CurveT<Ogre::Vector3> Vector3Curve;
typedef CurveT<Ogre::Vector4> Vector4Curve;
typedef CurveT<Ogre::Quaternion> QuaternionCurve;
}
#endif

View File

@ -25,6 +25,7 @@
#define OPENMW_COMPONENTS_NIF_DATA_HPP
#include "controlled.hpp"
#include "curve.hpp"
#include <OgreQuaternion.h>
#include <OgreVector3.h>
@ -211,7 +212,7 @@ public:
class NiPosData : public Record
{
public:
Vector3KeyList mKeyList;
Vector3Curve mKeyList;
void read(NIFStream *nif)
{
@ -222,7 +223,7 @@ public:
class NiUVData : public Record
{
public:
FloatKeyList mKeyList[4];
FloatCurve mKeyList[4];
void read(NIFStream *nif)
{
@ -234,7 +235,7 @@ public:
class NiFloatData : public Record
{
public:
FloatKeyList mKeyList;
FloatCurve mKeyList;
void read(NIFStream *nif)
{
@ -284,7 +285,7 @@ public:
class NiColorData : public Record
{
public:
Vector4KeyList mKeyList;
Vector4Curve mKeyList;
void read(NIFStream *nif)
{
@ -389,7 +390,7 @@ public:
struct NiMorphData : public Record
{
struct MorphData {
FloatKeyList mData;
FloatCurve mData;
std::vector<Ogre::Vector3> mVertices;
};
std::vector<MorphData> mMorphs;
@ -412,9 +413,9 @@ struct NiMorphData : public Record
struct NiKeyframeData : public Record
{
QuaternionKeyList mRotations;
Vector3KeyList mTranslations;
FloatKeyList mScales;
QuaternionCurve mRotations;
Vector3Curve mTranslations;
FloatCurve mScales;
void read(NIFStream *nif)
{

View File

@ -132,81 +132,5 @@ public:
size_t numRoots() { return roots.size(); }
};
template<typename T>
struct KeyT {
float mTime;
T mValue;
T mForwardValue; // Only for Quadratic interpolation
T mBackwardValue; // Only for Quadratic interpolation
float mTension; // Only for TBC interpolation
float mBias; // Only for TBC interpolation
float mContinuity; // Only for TBC interpolation
};
typedef KeyT<float> FloatKey;
typedef KeyT<Ogre::Vector3> Vector3Key;
typedef KeyT<Ogre::Vector4> Vector4Key;
typedef KeyT<Ogre::Quaternion> QuaternionKey;
template<typename T, T (NIFStream::*getValue)()>
struct KeyListT {
typedef std::vector< KeyT<T> > VecType;
static const int sLinearInterpolation = 1;
static const int sQuadraticInterpolation = 2;
static const int sTBCInterpolation = 3;
int mInterpolationType;
VecType mKeys;
void read(NIFStream *nif, bool force=false)
{
size_t count = nif->getInt();
if(count == 0 && !force)
return;
mInterpolationType = nif->getInt();
mKeys.resize(count);
if(mInterpolationType == sLinearInterpolation)
{
for(size_t i = 0;i < count;i++)
{
KeyT<T> &key = mKeys[i];
key.mTime = nif->getFloat();
key.mValue = (nif->*getValue)();
}
}
else if(mInterpolationType == sQuadraticInterpolation)
{
for(size_t i = 0;i < count;i++)
{
KeyT<T> &key = mKeys[i];
key.mTime = nif->getFloat();
key.mValue = (nif->*getValue)();
key.mForwardValue = (nif->*getValue)();
key.mBackwardValue = (nif->*getValue)();
}
}
else if(mInterpolationType == sTBCInterpolation)
{
for(size_t i = 0;i < count;i++)
{
KeyT<T> &key = mKeys[i];
key.mTime = nif->getFloat();
key.mValue = (nif->*getValue)();
key.mTension = nif->getFloat();
key.mBias = nif->getFloat();
key.mContinuity = nif->getFloat();
}
}
else
nif->file->warn("Unhandled interpolation type: "+Ogre::StringConverter::toString(mInterpolationType));
}
};
typedef KeyListT<float,&NIFStream::getFloat> FloatKeyList;
typedef KeyListT<Ogre::Vector3,&NIFStream::getVector3> Vector3KeyList;
typedef KeyListT<Ogre::Vector4,&NIFStream::getVector4> Vector4KeyList;
typedef KeyListT<Ogre::Quaternion,&NIFStream::getQuaternion> QuaternionKeyList;
} // Namespace
#endif

View File

@ -166,9 +166,9 @@ public:
class Value : public NodeTargetValue<Ogre::Real>
{
private:
Nif::QuaternionKeyList mRotations;
Nif::Vector3KeyList mTranslations;
Nif::FloatKeyList mScales;
Nif::QuaternionCurve mRotations;
Nif::Vector3Curve mTranslations;
Nif::FloatCurve mScales;
public:
Value(Ogre::Node *target, const Nif::NiKeyframeData *data)
@ -186,68 +186,16 @@ public:
virtual void setValue(Ogre::Real time)
{
if(mRotations.mKeys.size() > 0)
{
if(time <= mRotations.mKeys.front().mTime)
mNode->setOrientation(mRotations.mKeys.front().mValue);
else if(time >= mRotations.mKeys.back().mTime)
mNode->setOrientation(mRotations.mKeys.back().mValue);
else
{
Nif::QuaternionKeyList::VecType::const_iterator iter(mRotations.mKeys.begin()+1);
for(;iter != mRotations.mKeys.end();iter++)
{
if(iter->mTime < time)
continue;
if(mRotations)
mNode->setOrientation(mRotations.sample (time));
Nif::QuaternionKeyList::VecType::const_iterator last(iter-1);
float a = (time-last->mTime) / (iter->mTime-last->mTime);
mNode->setOrientation(Ogre::Quaternion::nlerp(a, last->mValue, iter->mValue));
break;
}
}
}
if(mTranslations.mKeys.size() > 0)
{
if(time <= mTranslations.mKeys.front().mTime)
mNode->setPosition(mTranslations.mKeys.front().mValue);
else if(time >= mTranslations.mKeys.back().mTime)
mNode->setPosition(mTranslations.mKeys.back().mValue);
else
{
Nif::Vector3KeyList::VecType::const_iterator iter(mTranslations.mKeys.begin()+1);
for(;iter != mTranslations.mKeys.end();iter++)
{
if(iter->mTime < time)
continue;
if(mTranslations)
mNode->setPosition(mTranslations.sample (time));
Nif::Vector3KeyList::VecType::const_iterator last(iter-1);
float a = (time-last->mTime) / (iter->mTime-last->mTime);
mNode->setPosition(last->mValue + ((iter->mValue - last->mValue)*a));
break;
}
}
}
if(mScales.mKeys.size() > 0)
if(mScales)
{
if(time <= mScales.mKeys.front().mTime)
mNode->setScale(Ogre::Vector3(mScales.mKeys.front().mValue));
else if(time >= mScales.mKeys.back().mTime)
mNode->setScale(Ogre::Vector3(mScales.mKeys.back().mValue));
else
{
Nif::FloatKeyList::VecType::const_iterator iter(mScales.mKeys.begin()+1);
for(;iter != mScales.mKeys.end();iter++)
{
if(iter->mTime < time)
continue;
Nif::FloatKeyList::VecType::const_iterator last(iter-1);
float a = (time-last->mTime) / (iter->mTime-last->mTime);
mNode->setScale(Ogre::Vector3(last->mValue + ((iter->mValue - last->mValue)*a)));
break;
}
}
float s = mScales.sample (time);
mNode->setScale(s, s, s);
}
}
};
@ -262,30 +210,14 @@ public:
{
private:
Ogre::MaterialPtr mMaterial;
Nif::FloatKeyList mUTrans;
Nif::FloatKeyList mVTrans;
Nif::FloatKeyList mUScale;
Nif::FloatKeyList mVScale;
Nif::FloatCurve mUTrans;
Nif::FloatCurve mVTrans;
Nif::FloatCurve mUScale;
Nif::FloatCurve mVScale;
static float lookupValue(const Nif::FloatKeyList &keys, float time, float def)
static float lookupValue(const Nif::FloatCurve &keys, float time, float def)
{
if(keys.mKeys.size() == 0)
return def;
if(time <= keys.mKeys.front().mTime)
return keys.mKeys.front().mValue;
Nif::FloatKeyList::VecType::const_iterator iter(keys.mKeys.begin()+1);
for(;iter != keys.mKeys.end();iter++)
{
if(iter->mTime < time)
continue;
Nif::FloatKeyList::VecType::const_iterator last(iter-1);
float a = (time-last->mTime) / (iter->mTime-last->mTime);
return last->mValue + ((iter->mValue - last->mValue)*a);
}
return keys.mKeys.back().mValue;
return keys ? keys.sample (time) : def;
}
public:
@ -392,18 +324,19 @@ class NIFObjectLoader
const Nif::NiColorData *clrdata = cl->data.getPtr();
Ogre::ParticleAffector *affector = partsys->addAffector("ColourInterpolator");
size_t num_colors = std::min<size_t>(6, clrdata->mKeyList.mKeys.size());
size_t num_colors = std::min<size_t>(6, clrdata->mKeyList.mSize);
for(size_t i = 0;i < num_colors;i++)
{
Nif::Vector4Curve::BaseKey const * Key = clrdata->mKeyList.keyAtIndex (i);
Ogre::ColourValue color;
color.r = clrdata->mKeyList.mKeys[i].mValue[0];
color.g = clrdata->mKeyList.mKeys[i].mValue[1];
color.b = clrdata->mKeyList.mKeys[i].mValue[2];
color.a = clrdata->mKeyList.mKeys[i].mValue[3];
color.r = Key->mValue[0];
color.g = Key->mValue[1];
color.b = Key->mValue[2];
color.a = Key->mValue[3];
affector->setParameter("colour"+Ogre::StringConverter::toString(i),
Ogre::StringConverter::toString(color));
affector->setParameter("time"+Ogre::StringConverter::toString(i),
Ogre::StringConverter::toString(clrdata->mKeyList.mKeys[i].mTime));
Ogre::StringConverter::toString(Key->mTime));
}
}
else if(e->recType == Nif::RC_NiParticleRotation)

View File

@ -10,6 +10,11 @@
namespace NifOgre
{
template <typename value_type>
static value_type min (value_type V0, value_type V1, value_type V2, value_type V3)
{
return std::min (std::min (V0, V1), std::min (V2, V3));
}
void NIFSkeletonLoader::buildAnimation(Ogre::Skeleton *skel, const std::string &name, const std::vector<const Nif::NiKeyframeController*> &ctrls, const std::vector<std::string> &targets, float startTime, float stopTime)
{
@ -22,15 +27,6 @@ void NIFSkeletonLoader::buildAnimation(Ogre::Skeleton *skel, const std::string &
continue;
const Nif::NiKeyframeData *kf = kfc->data.getPtr();
/* Get the keyframes and make sure they're sorted first to last */
const Nif::QuaternionKeyList &quatkeys = kf->mRotations;
const Nif::Vector3KeyList &trankeys = kf->mTranslations;
const Nif::FloatKeyList &scalekeys = kf->mScales;
Nif::QuaternionKeyList::VecType::const_iterator quatiter = quatkeys.mKeys.begin();
Nif::Vector3KeyList::VecType::const_iterator traniter = trankeys.mKeys.begin();
Nif::FloatKeyList::VecType::const_iterator scaleiter = scalekeys.mKeys.begin();
Ogre::Bone *bone = skel->getBone(targets[i]);
// NOTE: For some reason, Ogre doesn't like the node track ID being different from
// the bone ID
@ -38,83 +34,30 @@ void NIFSkeletonLoader::buildAnimation(Ogre::Skeleton *skel, const std::string &
anim->getNodeTrack(bone->getHandle()) :
anim->createNodeTrack(bone->getHandle(), bone);
Ogre::Quaternion lastquat, curquat;
Ogre::Vector3 lasttrans(0.0f), curtrans(0.0f);
Ogre::Vector3 lastscale(1.0f), curscale(1.0f);
if(quatiter != quatkeys.mKeys.end())
lastquat = curquat = quatiter->mValue;
if(traniter != trankeys.mKeys.end())
lasttrans = curtrans = traniter->mValue;
if(scaleiter != scalekeys.mKeys.end())
lastscale = curscale = Ogre::Vector3(scaleiter->mValue);
Nif::QuaternionCurve::interpolator rci (kf->mRotations);
Nif::Vector3Curve::interpolator tci (kf->mTranslations);
Nif::FloatCurve::interpolator sci (kf->mScales);
bool didlast = false;
while(!didlast)
float next_timestamp = startTime;
for (;;)
{
float curtime = std::numeric_limits<float>::max();
//Get latest time
if(quatiter != quatkeys.mKeys.end())
curtime = std::min(curtime, quatiter->mTime);
if(traniter != trankeys.mKeys.end())
curtime = std::min(curtime, traniter->mTime);
if(scaleiter != scalekeys.mKeys.end())
curtime = std::min(curtime, scaleiter->mTime);
curtime = std::max(curtime, startTime);
if(curtime >= stopTime)
{
didlast = true;
curtime = stopTime;
}
// Get the latest quaternions, translations, and scales for the
// current time
while(quatiter != quatkeys.mKeys.end() && curtime >= quatiter->mTime)
{
lastquat = curquat;
if(++quatiter != quatkeys.mKeys.end())
curquat = quatiter->mValue;
}
while(traniter != trankeys.mKeys.end() && curtime >= traniter->mTime)
{
lasttrans = curtrans;
if(++traniter != trankeys.mKeys.end())
curtrans = traniter->mValue;
}
while(scaleiter != scalekeys.mKeys.end() && curtime >= scaleiter->mTime)
{
lastscale = curscale;
if(++scaleiter != scalekeys.mKeys.end())
curscale = Ogre::Vector3(scaleiter->mValue);
}
static const Ogre::Vector3 one (1,1,1);
Ogre::TransformKeyFrame *kframe;
kframe = nodetrack->createNodeKeyFrame(curtime);
if(quatiter == quatkeys.mKeys.end() || quatiter == quatkeys.mKeys.begin())
kframe->setRotation(curquat);
else
{
Nif::QuaternionKeyList::VecType::const_iterator last = quatiter-1;
float diff = (curtime-last->mTime) / (quatiter->mTime-last->mTime);
kframe->setRotation(Ogre::Quaternion::nlerp(diff, lastquat, curquat));
}
if(traniter == trankeys.mKeys.end() || traniter == trankeys.mKeys.begin())
kframe->setTranslate(curtrans);
else
{
Nif::Vector3KeyList::VecType::const_iterator last = traniter-1;
float diff = (curtime-last->mTime) / (traniter->mTime-last->mTime);
kframe->setTranslate(lasttrans + ((curtrans-lasttrans)*diff));
}
if(scaleiter == scalekeys.mKeys.end() || scaleiter == scalekeys.mKeys.begin())
kframe->setScale(curscale);
else
{
Nif::FloatKeyList::VecType::const_iterator last = scaleiter-1;
float diff = (curtime-last->mTime) / (scaleiter->mTime-last->mTime);
kframe->setScale(lastscale + ((curscale-lastscale)*diff));
}
kframe = nodetrack->createNodeKeyFrame (next_timestamp);
if (rci.hasData ()) kframe->setRotation (rci.valueAt (next_timestamp));
if (tci.hasData ()) kframe->setTranslate (tci.valueAt (next_timestamp));
if (sci.hasData ()) kframe->setScale (sci.valueAt (next_timestamp)*one);
if (next_timestamp >= stopTime)
break;
next_timestamp = min (stopTime,
rci.nextTime (),
tci.nextTime (),
sci.nextTime ());
}
}
anim->optimise();