2020-08-27 11:48:59 +00:00
|
|
|
#ifndef MISC_MATHUTIL_H
|
|
|
|
#define MISC_MATHUTIL_H
|
|
|
|
|
|
|
|
#include <osg/Math>
|
2023-06-10 16:02:32 +02:00
|
|
|
#include <osg/Matrixf>
|
|
|
|
#include <osg/Quat>
|
2020-08-27 11:48:59 +00:00
|
|
|
#include <osg/Vec2f>
|
2023-06-10 16:02:32 +02:00
|
|
|
#include <osg/Vec3f>
|
2020-08-27 11:48:59 +00:00
|
|
|
|
2023-08-05 03:04:34 +02:00
|
|
|
#include <type_traits>
|
|
|
|
|
2020-08-27 11:48:59 +00:00
|
|
|
namespace Misc
|
|
|
|
{
|
|
|
|
|
|
|
|
/// Normalizes given angle to the range [-PI, PI]. E.g. PI*3/2 -> -PI/2.
|
|
|
|
inline double normalizeAngle(double angle)
|
|
|
|
{
|
|
|
|
double fullTurns = angle / (2 * osg::PI) + 0.5;
|
|
|
|
return (fullTurns - floor(fullTurns) - 0.5) * (2 * osg::PI);
|
|
|
|
}
|
2022-09-22 21:26:05 +03:00
|
|
|
|
2020-08-27 11:48:59 +00:00
|
|
|
/// Rotates given 2d vector counterclockwise. Angle is in radians.
|
|
|
|
inline osg::Vec2f rotateVec2f(osg::Vec2f vec, float angle)
|
|
|
|
{
|
|
|
|
float s = std::sin(angle);
|
|
|
|
float c = std::cos(angle);
|
|
|
|
return osg::Vec2f(vec.x() * c + vec.y() * -s, vec.x() * s + vec.y() * c);
|
|
|
|
}
|
|
|
|
|
2023-06-10 16:02:32 +02:00
|
|
|
inline osg::Vec3f toEulerAnglesXZ(osg::Vec3f forward)
|
|
|
|
{
|
|
|
|
float x = -asin(forward.z());
|
|
|
|
float z = atan2(forward.x(), forward.y());
|
|
|
|
return osg::Vec3f(x, 0, z);
|
|
|
|
}
|
|
|
|
inline osg::Vec3f toEulerAnglesXZ(osg::Quat quat)
|
|
|
|
{
|
|
|
|
return toEulerAnglesXZ(quat * osg::Vec3f(0, 1, 0));
|
|
|
|
}
|
|
|
|
inline osg::Vec3f toEulerAnglesXZ(osg::Matrixf m)
|
|
|
|
{
|
|
|
|
osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2));
|
|
|
|
forward.normalize();
|
|
|
|
return toEulerAnglesXZ(forward);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline osg::Vec3f toEulerAnglesZYX(osg::Vec3f forward, osg::Vec3f up)
|
|
|
|
{
|
|
|
|
float y = -asin(up.x());
|
|
|
|
float x = atan2(up.y(), up.z());
|
|
|
|
osg::Vec3f forwardZ = (osg::Quat(x, osg::Vec3f(1, 0, 0)) * osg::Quat(y, osg::Vec3f(0, 1, 0))) * forward;
|
|
|
|
float z = atan2(forwardZ.x(), forwardZ.y());
|
|
|
|
return osg::Vec3f(x, y, z);
|
|
|
|
}
|
|
|
|
inline osg::Vec3f toEulerAnglesZYX(osg::Quat quat)
|
|
|
|
{
|
|
|
|
return toEulerAnglesZYX(quat * osg::Vec3f(0, 1, 0), quat * osg::Vec3f(0, 0, 1));
|
|
|
|
}
|
|
|
|
inline osg::Vec3f toEulerAnglesZYX(osg::Matrixf m)
|
|
|
|
{
|
|
|
|
osg::Vec3f forward(m(1, 0), m(1, 1), m(1, 2));
|
|
|
|
osg::Vec3f up(m(2, 0), m(2, 1), m(2, 2));
|
|
|
|
forward.normalize();
|
|
|
|
up.normalize();
|
|
|
|
return toEulerAnglesZYX(forward, up);
|
|
|
|
}
|
|
|
|
|
2023-08-05 03:04:34 +02:00
|
|
|
template <class T>
|
|
|
|
bool isPowerOfTwo(T x)
|
2023-02-05 12:30:38 -08:00
|
|
|
{
|
2023-08-05 03:04:34 +02:00
|
|
|
static_assert(std::is_integral_v<T>);
|
2023-02-05 12:30:38 -08:00
|
|
|
return ((x > 0) && ((x & (x - 1)) == 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int nextPowerOfTwo(int v)
|
|
|
|
{
|
|
|
|
if (isPowerOfTwo(v))
|
|
|
|
return v;
|
|
|
|
int depth = 0;
|
|
|
|
while (v)
|
|
|
|
{
|
|
|
|
v >>= 1;
|
|
|
|
depth++;
|
|
|
|
}
|
|
|
|
return 1 << depth;
|
|
|
|
}
|
2020-08-27 11:48:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|