PIC Jump Table Support (#120)

* Support for $gp relative jump table calls
This commit is contained in:
Ethan Lafrenais 2025-01-16 00:40:50 -05:00 committed by GitHub
parent 916d16417e
commit 36b5d9ae33
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 88 additions and 6 deletions

View File

@ -9,6 +9,7 @@
#include <unordered_map>
#include <unordered_set>
#include <filesystem>
#include <optional>
#ifdef _MSC_VER
inline uint32_t byteswap(uint32_t val) {
@ -45,10 +46,11 @@ namespace N64Recomp {
uint32_t addu_vram;
uint32_t jr_vram;
uint16_t section_index;
std::optional<uint32_t> got_offset;
std::vector<uint32_t> entries;
JumpTable(uint32_t vram, uint32_t addend_reg, uint32_t rom, uint32_t lw_vram, uint32_t addu_vram, uint32_t jr_vram, uint16_t section_index, std::vector<uint32_t>&& entries)
: vram(vram), addend_reg(addend_reg), rom(rom), lw_vram(lw_vram), addu_vram(addu_vram), jr_vram(jr_vram), section_index(section_index), entries(std::move(entries)) {}
JumpTable(uint32_t vram, uint32_t addend_reg, uint32_t rom, uint32_t lw_vram, uint32_t addu_vram, uint32_t jr_vram, uint16_t section_index, std::optional<uint32_t> got_offset, std::vector<uint32_t>&& entries)
: vram(vram), addend_reg(addend_reg), rom(rom), lw_vram(lw_vram), addu_vram(addu_vram), jr_vram(jr_vram), section_index(section_index), got_offset(got_offset), entries(std::move(entries)) {}
};
enum class RelocType : uint8_t {
@ -100,6 +102,7 @@ namespace N64Recomp {
bool executable = false;
bool relocatable = false; // TODO is this needed? relocs being non-empty should be an equivalent check.
bool has_mips32_relocs = false;
std::optional<uint32_t> got_ram_addr = std::nullopt;
};
struct ReferenceSection {

View File

@ -16,15 +16,18 @@ struct RegState {
uint32_t prev_addiu_vram;
uint32_t prev_addu_vram;
uint8_t prev_addend_reg;
uint32_t prev_got_offset; // offset of lw rt,offset(gp)
bool valid_lui;
bool valid_addiu;
bool valid_addend;
bool valid_got_offset;
// For tracking a register that has been loaded from RAM
uint32_t loaded_lw_vram;
uint32_t loaded_addu_vram;
uint32_t loaded_address;
uint8_t loaded_addend_reg;
bool valid_loaded;
bool valid_got_loaded; // valid load through the GOT
RegState() = default;
@ -33,10 +36,12 @@ struct RegState {
prev_addiu_vram = 0;
prev_addu_vram = 0;
prev_addend_reg = 0;
prev_got_offset = 0;
valid_lui = false;
valid_addiu = false;
valid_addend = false;
valid_got_offset = false;
loaded_lw_vram = 0;
loaded_addu_vram = 0;
@ -44,6 +49,7 @@ struct RegState {
loaded_addend_reg = 0;
valid_loaded = false;
valid_got_loaded = false;
}
};
@ -51,7 +57,7 @@ using InstrId = rabbitizer::InstrId::UniqueId;
using RegId = rabbitizer::Registers::Cpu::GprO32;
bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const N64Recomp::Function& func, N64Recomp::FunctionStats& stats,
RegState reg_states[32], std::vector<RegState>& stack_states) {
RegState reg_states[32], std::vector<RegState>& stack_states, bool is_got_addr_defined) {
// Temporary register state for tracking the register being operated on
RegState temp{};
@ -98,8 +104,26 @@ bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const N64Recom
case InstrId::cpu_addu:
// rd has been completely overwritten, so invalidate it
temp.invalidate();
if (reg_states[rs].valid_got_offset != reg_states[rt].valid_got_offset) {
// Track which of the two registers has the valid GOT offset state and which is the addend
int valid_got_offset_reg = reg_states[rs].valid_got_offset ? rs : rt;
int addend_reg = reg_states[rs].valid_got_offset ? rt : rs;
// Copy the got offset reg's state into the destination reg, then set the destination reg's addend to the other operand
temp = reg_states[valid_got_offset_reg];
temp.valid_addend = true;
temp.prev_addend_reg = addend_reg;
temp.prev_addu_vram = instr.getVram();
} else if (((rs == (int)RegId::GPR_O32_gp) || (rt == (int)RegId::GPR_O32_gp))
&& reg_states[rs].valid_got_loaded != reg_states[rt].valid_got_loaded) {
// `addu rd, rs, $gp` or `addu rd, $gp, rt` after valid GOT load, this is the last part of a position independent
// jump table call. Keep the register state intact.
int valid_got_loaded_reg = reg_states[rs].valid_got_loaded ? rs : rt;
temp = reg_states[valid_got_loaded_reg];
}
// Exactly one of the two addend register states should have a valid lui at this time
if (reg_states[rs].valid_lui != reg_states[rt].valid_lui) {
else if (reg_states[rs].valid_lui != reg_states[rt].valid_lui) {
// Track which of the two registers has the valid lui state and which is the addend
int valid_lui_reg = reg_states[rs].valid_lui ? rs : rt;
int addend_reg = reg_states[rs].valid_lui ? rt : rs;
@ -178,6 +202,21 @@ bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const N64Recom
temp.loaded_addu_vram = reg_states[base].prev_addu_vram;
}
}
// If the base register has a valid GOT offset and a valid addend before this, then this may be a load from a position independent jump table
else if (reg_states[base].valid_got_offset && reg_states[base].valid_addend) {
// At this point, we will have the offset from the value of the previously read GOT entry to the address being
// loaded here as well as the GOT entry offset itself
temp.valid_got_loaded = true;
temp.loaded_lw_vram = instr.getVram();
temp.loaded_address = imm; // This address is relative for now, we'll calculate the absolute address later
temp.loaded_addend_reg = reg_states[base].prev_addend_reg;
temp.loaded_addu_vram = reg_states[base].prev_addu_vram;
temp.prev_got_offset = reg_states[base].prev_got_offset;
} else if (base == (int)RegId::GPR_O32_gp && is_got_addr_defined) {
// lw from the $gp register implies a read from the global offset table
temp.prev_got_offset = imm;
temp.valid_got_offset = true;
}
reg_states[rt] = temp;
break;
case InstrId::cpu_jr:
@ -195,6 +234,19 @@ bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const N64Recom
reg_states[rs].loaded_addu_vram,
instr.getVram(),
0, // section index gets filled in later
std::nullopt,
std::vector<uint32_t>{}
);
} else if (reg_states[rs].valid_got_loaded) {
stats.jump_tables.emplace_back(
reg_states[rs].loaded_address,
reg_states[rs].loaded_addend_reg,
0,
reg_states[rs].loaded_lw_vram,
reg_states[rs].loaded_addu_vram,
instr.getVram(),
0, // section index gets filled in later
reg_states[rs].prev_got_offset,
std::vector<uint32_t>{}
);
}
@ -214,6 +266,9 @@ bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const N64Recom
bool N64Recomp::analyze_function(const N64Recomp::Context& context, const N64Recomp::Function& func,
const std::vector<rabbitizer::InstructionCpu>& instructions, N64Recomp::FunctionStats& stats) {
const Section* section = &context.sections[func.section_index];
std::optional<uint32_t> got_ram_addr = section->got_ram_addr;
// Create a state to track each register (r0 won't be used)
RegState reg_states[32] {};
std::vector<RegState> stack_states{};
@ -221,11 +276,26 @@ bool N64Recomp::analyze_function(const N64Recomp::Context& context, const N64Rec
// Look for jump tables
// A linear search through the func won't be accurate due to not taking control flow into account, but it'll work for finding jtables
for (const auto& instr : instructions) {
if (!analyze_instruction(instr, func, stats, reg_states, stack_states)) {
if (!analyze_instruction(instr, func, stats, reg_states, stack_states, got_ram_addr.has_value())) {
return false;
}
}
// Calculate absolute addresses for position-independent jump tables
if (got_ram_addr.has_value()) {
uint32_t got_rom_addr = got_ram_addr.value() + func.rom - func.vram;
for (size_t i = 0; i < stats.jump_tables.size(); i++) {
JumpTable& cur_jtbl = stats.jump_tables[i];
if (cur_jtbl.got_offset.has_value()) {
uint32_t got_word = byteswap(*reinterpret_cast<const uint32_t*>(&context.rom[got_rom_addr + cur_jtbl.got_offset.value()]));
cur_jtbl.vram += (section->ram_addr + got_word);
}
}
}
// Sort jump tables by their address
std::sort(stats.jump_tables.begin(), stats.jump_tables.end(),
[](const JumpTable& a, const JumpTable& b)
@ -253,8 +323,15 @@ bool N64Recomp::analyze_function(const N64Recomp::Context& context, const N64Rec
// TODO same as above
uint32_t rom_addr = vram + func.rom - func.vram;
uint32_t jtbl_word = byteswap(*reinterpret_cast<const uint32_t*>(&context.rom[rom_addr]));
if (cur_jtbl.got_offset.has_value() && got_ram_addr.has_value()) {
// Position independent jump tables have values that are offsets from the GOT,
// convert those to absolute addresses
jtbl_word += got_ram_addr.value();
}
// Check if the entry is a valid address in the current function
if (jtbl_word < func.vram || jtbl_word > func.vram + func.words.size() * sizeof(func.words[0])) {
if (jtbl_word < func.vram || jtbl_word >= func.vram + func.words.size() * sizeof(func.words[0])) {
// If it's not then this is the end of the jump table
break;
}

View File

@ -509,6 +509,7 @@ bool N64Recomp::Context::from_symbol_file(const std::filesystem::path& symbol_fi
std::optional<uint32_t> vram_addr = el["vram"].template value<uint32_t>();
std::optional<uint32_t> size = el["size"].template value<uint32_t>();
std::optional<std::string> name = el["name"].template value<std::string>();
std::optional<uint32_t> got_ram_addr = el["got_address"].template value<uint32_t>();
if (!rom_addr.has_value() || !vram_addr.has_value() || !size.has_value() || !name.has_value()) {
throw toml::parse_error("Section entry missing required field(s)", el.source());
@ -521,6 +522,7 @@ bool N64Recomp::Context::from_symbol_file(const std::filesystem::path& symbol_fi
section.ram_addr = vram_addr.value();
section.size = size.value();
section.name = name.value();
section.got_ram_addr = got_ram_addr;
section.executable = true;
// Read functions for the section.