mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-07 09:54:45 +00:00
96 lines
3.0 KiB
Python
96 lines
3.0 KiB
Python
import tensorflow as tf
|
|
|
|
def conv_layer(x, filter_shape, stride):
|
|
filters = tf.get_variable(
|
|
name='weight',
|
|
shape=filter_shape,
|
|
dtype=tf.float32,
|
|
initializer=tf.contrib.layers.xavier_initializer(),
|
|
trainable=True)
|
|
return tf.nn.conv2d(x, filters, [1, stride, stride, 1], padding='SAME')
|
|
|
|
|
|
def dilated_conv_layer(x, filter_shape, dilation):
|
|
filters = tf.get_variable(
|
|
name='weight',
|
|
shape=filter_shape,
|
|
dtype=tf.float32,
|
|
initializer=tf.contrib.layers.xavier_initializer(),
|
|
trainable=True)
|
|
return tf.nn.atrous_conv2d(x, filters, dilation, padding='SAME')
|
|
|
|
|
|
def deconv_layer(x, filter_shape, output_shape, stride):
|
|
filters = tf.get_variable(
|
|
name='weight',
|
|
shape=filter_shape,
|
|
dtype=tf.float32,
|
|
initializer=tf.contrib.layers.xavier_initializer(),
|
|
trainable=True)
|
|
return tf.nn.conv2d_transpose(x, filters, output_shape, [1, stride, stride, 1])
|
|
|
|
|
|
def batch_normalize(x, is_training, decay=0.99, epsilon=0.001):
|
|
def bn_train():
|
|
batch_mean, batch_var = tf.nn.moments(x, axes=[0, 1, 2])
|
|
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
|
|
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
|
|
with tf.control_dependencies([train_mean, train_var]):
|
|
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon)
|
|
|
|
def bn_inference():
|
|
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon)
|
|
|
|
dim = x.get_shape().as_list()[-1]
|
|
beta = tf.get_variable(
|
|
name='beta',
|
|
shape=[dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.truncated_normal_initializer(stddev=0.0),
|
|
trainable=True)
|
|
scale = tf.get_variable(
|
|
name='scale',
|
|
shape=[dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.truncated_normal_initializer(stddev=0.1),
|
|
trainable=True)
|
|
pop_mean = tf.get_variable(
|
|
name='pop_mean',
|
|
shape=[dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.constant_initializer(0.0),
|
|
trainable=False)
|
|
pop_var = tf.get_variable(
|
|
name='pop_var',
|
|
shape=[dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.constant_initializer(1.0),
|
|
trainable=False)
|
|
|
|
return tf.cond(is_training, bn_train, bn_inference)
|
|
|
|
|
|
def flatten_layer(x):
|
|
input_shape = x.get_shape().as_list()
|
|
dim = input_shape[1] * input_shape[2] * input_shape[3]
|
|
transposed = tf.transpose(x, (0, 3, 1, 2))
|
|
return tf.reshape(transposed, [-1, dim])
|
|
|
|
|
|
def full_connection_layer(x, out_dim):
|
|
in_dim = x.get_shape().as_list()[-1]
|
|
W = tf.get_variable(
|
|
name='weight',
|
|
shape=[in_dim, out_dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.truncated_normal_initializer(stddev=0.1),
|
|
trainable=True)
|
|
b = tf.get_variable(
|
|
name='bias',
|
|
shape=[out_dim],
|
|
dtype=tf.float32,
|
|
initializer=tf.constant_initializer(0.0),
|
|
trainable=True)
|
|
return tf.add(tf.matmul(x, W), b)
|
|
|