DeepCreamPy/libs/pconv_layer.py
2018-10-20 00:11:20 -04:00

127 lines
5.1 KiB
Python

from keras.utils import conv_utils
from keras import backend as K
from keras.engine import InputSpec
from keras.layers import Conv2D
class PConv2D(Conv2D):
def __init__(self, *args, n_channels=3, mono=False, **kwargs):
super().__init__(*args, **kwargs)
self.input_spec = [InputSpec(ndim=4), InputSpec(ndim=4)]
def build(self, input_shape):
"""Adapted from original _Conv() layer of Keras
param input_shape: list of dimensions for [img, mask]
"""
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[0][channel_axis] is None:
raise ValueError('The channel dimension of the inputs should be defined. Found `None`.')
self.input_dim = input_shape[0][channel_axis]
# Image kernel
kernel_shape = self.kernel_size + (self.input_dim, self.filters)
self.kernel = self.add_weight(shape=kernel_shape,
initializer=self.kernel_initializer,
name='img_kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
# Mask kernel
self.kernel_mask = K.ones(shape=self.kernel_size + (self.input_dim, self.filters))
if self.use_bias:
self.bias = self.add_weight(shape=(self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.built = True
def call(self, inputs, mask=None):
'''
We will be using the Keras conv2d method, and essentially we have
to do here is multiply the mask with the input X, before we apply the
convolutions. For the mask itself, we apply convolutions with all weights
set to 1.
Subsequently, we set all mask values >0 to 1, and otherwise 0
'''
# Both image and mask must be supplied
if type(inputs) is not list or len(inputs) != 2:
raise Exception('PartialConvolution2D must be called on a list of two tensors [img, mask]. Instead got: ' + str(inputs))
# Create normalization. Slight change here compared to paper, using mean mask value instead of sum
normalization = K.mean(inputs[1], axis=[1,2], keepdims=True)
normalization = K.repeat_elements(normalization, inputs[1].shape[1], axis=1)
normalization = K.repeat_elements(normalization, inputs[1].shape[2], axis=2)
# Apply convolutions to image
img_output = K.conv2d(
(inputs[0]*inputs[1]) / normalization, self.kernel,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate
)
# Apply convolutions to mask
mask_output = K.conv2d(
inputs[1], self.kernel_mask,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate
)
# Where something happened, set 1, otherwise 0
mask_output = K.cast(K.greater(mask_output, 0), 'float32')
# Apply bias only to the image (if chosen to do so)
if self.use_bias:
img_output = K.bias_add(
img_output,
self.bias,
data_format=self.data_format)
# Apply activations on the image
if self.activation is not None:
img_output = self.activation(img_output)
return [img_output, mask_output]
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_last':
space = input_shape[0][1:-1]
new_space = []
for i in range(len(space)):
new_dim = conv_utils.conv_output_length(
space[i],
self.kernel_size[i],
padding=self.padding,
stride=self.strides[i],
dilation=self.dilation_rate[i])
new_space.append(new_dim)
new_shape = (input_shape[0][0],) + tuple(new_space) + (self.filters,)
return [new_shape, new_shape]
if self.data_format == 'channels_first':
space = input_shape[2:]
new_space = []
for i in range(len(space)):
new_dim = conv_utils.conv_output_length(
space[i],
self.kernel_size[i],
padding=self.padding,
stride=self.strides[i],
dilation=self.dilation_rate[i])
new_space.append(new_dim)
new_shape = (input_shape[0], self.filters) + tuple(new_space)
return [new_shape, new_shape]