mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-07 09:54:45 +00:00
164 lines
7.3 KiB
Python
164 lines
7.3 KiB
Python
from layer import *
|
|
|
|
class Model:
|
|
def __init__(self, x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size):
|
|
self.batch_size = batch_size
|
|
self.merged = x * (1 - mask) + mosaic * (mask)
|
|
self.imitation = self.generator(self.merged, is_training)
|
|
self.completion = self.imitation * mask + x * (1 - mask)
|
|
self.real = self.discriminator(x, local_x, reuse=False)
|
|
self.fake = self.discriminator(global_completion, local_completion, reuse=True)
|
|
self.g_loss = self.calc_g_loss(x, self.completion)
|
|
self.d_loss = self.calc_d_loss(self.real, self.fake)
|
|
self.g_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
|
|
self.d_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
|
|
|
|
|
|
def generator(self, x, is_training):
|
|
with tf.variable_scope('generator'):
|
|
with tf.variable_scope('conv1'):
|
|
x = conv_layer(x, [5, 5, 3, 64], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv2'):
|
|
x = conv_layer(x, [3, 3, 64, 128], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv3'):
|
|
x = conv_layer(x, [3, 3, 128, 128], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv4'):
|
|
x = conv_layer(x, [3, 3, 128, 256], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv5'):
|
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv6'):
|
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('dilated1'):
|
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('dilated2'):
|
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 4)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('dilated3'):
|
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 8)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('dilated4'):
|
|
x = dilated_conv_layer(x, [3, 3, 256, 256], 16)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv7'):
|
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv8'):
|
|
x = conv_layer(x, [3, 3, 256, 256], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('deconv1'):
|
|
x = deconv_layer(x, [4, 4, 128, 256], [self.batch_size, 64, 64, 128], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv9'):
|
|
x = conv_layer(x, [3, 3, 128, 128], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('deconv2'):
|
|
x = deconv_layer(x, [4, 4, 64, 128], [self.batch_size, 128, 128, 64], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv10'):
|
|
x = conv_layer(x, [3, 3, 64, 32], 1)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv11'):
|
|
x = conv_layer(x, [3, 3, 32, 3], 1)
|
|
x = tf.nn.tanh(x)
|
|
|
|
return x
|
|
|
|
|
|
def discriminator(self, global_x, local_x, reuse):
|
|
def global_discriminator(x):
|
|
is_training = tf.constant(True)
|
|
with tf.variable_scope('global'):
|
|
with tf.variable_scope('conv1'):
|
|
x = conv_layer(x, [5, 5, 3, 64], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv2'):
|
|
x = conv_layer(x, [5, 5, 64, 128], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv3'):
|
|
x = conv_layer(x, [5, 5, 128, 256], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv4'):
|
|
x = conv_layer(x, [5, 5, 256, 512], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv5'):
|
|
x = conv_layer(x, [5, 5, 512, 512], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('fc'):
|
|
x = flatten_layer(x)
|
|
x = full_connection_layer(x, 1024)
|
|
return x
|
|
|
|
def local_discriminator(x):
|
|
is_training = tf.constant(True)
|
|
with tf.variable_scope('local'):
|
|
with tf.variable_scope('conv1'):
|
|
x = conv_layer(x, [5, 5, 3, 64], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv2'):
|
|
x = conv_layer(x, [5, 5, 64, 128], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv3'):
|
|
x = conv_layer(x, [5, 5, 128, 256], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('conv4'):
|
|
x = conv_layer(x, [5, 5, 256, 512], 2)
|
|
x = batch_normalize(x, is_training)
|
|
x = tf.nn.relu(x)
|
|
with tf.variable_scope('fc'):
|
|
x = flatten_layer(x)
|
|
x = full_connection_layer(x, 1024)
|
|
return x
|
|
|
|
with tf.variable_scope('discriminator', reuse=reuse):
|
|
global_output = global_discriminator(global_x)
|
|
local_output = local_discriminator(local_x)
|
|
with tf.variable_scope('concatenation'):
|
|
output = tf.concat((global_output, local_output), 1)
|
|
output = full_connection_layer(output, 1)
|
|
|
|
return output
|
|
|
|
|
|
def calc_g_loss(self, x, completion):
|
|
loss = tf.nn.l2_loss(x - completion)
|
|
return tf.reduce_mean(loss)
|
|
|
|
|
|
def calc_d_loss(self, real, fake):
|
|
alpha = 4e-4
|
|
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real)))
|
|
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake)))
|
|
return tf.add(d_loss_real, d_loss_fake) * alpha
|
|
|