mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-26 21:35:40 +00:00
306 lines
12 KiB
Python
Executable File
306 lines
12 KiB
Python
Executable File
from __future__ import division
|
|
from ops import *
|
|
import tensorflow.contrib.layers as layers
|
|
import math
|
|
|
|
def conv_nn(input, dims1, dims2, size1, size2, k_size = 3):
|
|
|
|
pp = tf.pad(input, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
L1 = layers.conv2d(pp, dims1, [k_size, k_size], stride=[1, 1], padding='VALID', activation_fn=None)
|
|
L1 = tf.nn.elu(L1)
|
|
|
|
pp = tf.pad(L1, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
L2 = layers.conv2d(pp, dims2, [k_size, k_size], stride=[1, 1], padding='VALID', activation_fn=None)
|
|
L2 = tf.nn.elu(L2)
|
|
L2 = tf.image.resize_nearest_neighbor(L2, (size1, size2))
|
|
|
|
return L2
|
|
|
|
def encoder(input, reuse, name):
|
|
with tf.variable_scope(name):
|
|
if reuse:
|
|
tf.get_variable_scope().reuse_variables()
|
|
else:
|
|
assert tf.get_variable_scope().reuse is False
|
|
|
|
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
CL1 = layers.conv2d(p, 32, [5, 5], stride=[1, 1], padding='VALID', activation_fn=None)
|
|
CL1 = tf.nn.elu(CL1) # 256 256 32
|
|
|
|
p = tf.pad(CL1, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
CL2 = layers.conv2d(p, 64, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
|
|
CL2 = tf.nn.elu(CL2) # 128 128 64
|
|
|
|
p = tf.pad(CL2, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
CL3 = layers.conv2d(p, 64, [3, 3], stride=[1, 1], padding='VALID', activation_fn=None)
|
|
CL3 = tf.nn.elu(CL3) # 128 128 64
|
|
|
|
p = tf.pad(CL3, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
CL4 = layers.conv2d(p, 128, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
|
|
CL4 = tf.nn.elu(CL4) # 64 64 128
|
|
|
|
p = tf.pad(CL4, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
CL5 = layers.conv2d(p, 128, [3, 3], stride=[1, 1], padding='VALID', activation_fn=None)
|
|
CL5 = tf.nn.elu(CL5) # 64 64 128
|
|
|
|
p = tf.pad(CL5, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
|
|
CL6 = layers.conv2d(p, 256, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
|
|
CL6 = tf.nn.elu(CL6) # 32 32 128
|
|
|
|
p = tf.pad(CL6, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
DCL1 = layers.conv2d(p, 256, [3, 3], rate=2, stride=[1, 1], padding='VALID', activation_fn=None)
|
|
DCL1 = tf.nn.elu(DCL1)
|
|
p = tf.pad(DCL1, [[0, 0], [4, 4], [4, 4], [0, 0]], "REFLECT")
|
|
DCL2 = layers.conv2d(p, 256, [3, 3], rate=4, stride=[1, 1], padding='VALID', activation_fn=None)
|
|
DCL2 = tf.nn.elu(DCL2)
|
|
p = tf.pad(DCL2, [[0, 0], [8, 8], [8, 8], [0, 0]], "REFLECT")
|
|
DCL3 = layers.conv2d(p, 256, [3, 3], rate=8, stride=[1, 1], padding='VALID', activation_fn=None)
|
|
DCL3 = tf.nn.elu(DCL3)
|
|
p = tf.pad(DCL3, [[0, 0], [16, 16], [16, 16], [0, 0]], "REFLECT")
|
|
DCL4 = layers.conv2d(p, 256, [3, 3], rate=16, stride=[1, 1], padding='VALID', activation_fn=None)
|
|
DCL4 = tf.nn.elu(DCL4) # 32 32 128
|
|
|
|
return DCL4
|
|
|
|
def decoder(input, size1, size2, reuse, name):
|
|
with tf.variable_scope(name):
|
|
if reuse:
|
|
tf.get_variable_scope().reuse_variables()
|
|
else:
|
|
assert tf.get_variable_scope().reuse is False
|
|
|
|
DL1 = conv_nn(input, 128, 128, int(size1/4), int(size2/4)) # 64 64 128
|
|
|
|
DL2 = conv_nn(DL1, 64, 64, int(size1/2), int(size2/2)) # 128 128 64
|
|
|
|
DL3 = conv_nn(DL2, 32, 32, int(size1), int(size2))
|
|
|
|
DL4 = conv_nn(DL3, 16, 16, int(size1), int(size2))
|
|
|
|
LL2 = layers.conv2d(DL4, 3, [3, 3], stride=[1, 1], padding='SAME', activation_fn=None) # 256 256 3
|
|
LL2 = tf.clip_by_value(LL2, -1.0, 1.0)
|
|
|
|
return LL2
|
|
|
|
def discriminator_G(input, reuse, name):
|
|
with tf.variable_scope(name):
|
|
# image is 256 x 256 x input_c_dim
|
|
if reuse:
|
|
tf.get_variable_scope().reuse_variables()
|
|
else:
|
|
assert tf.get_variable_scope().reuse is False
|
|
|
|
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L1 = layers.conv2d(p, 64, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L1 = instance_norm(L1, 'di1')
|
|
L1 = tf.nn.leaky_relu(L1)
|
|
|
|
p = tf.pad(L1, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L2 = layers.conv2d(p, 128, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L2 = instance_norm(L2, 'di2')
|
|
L2 = tf.nn.leaky_relu(L2)
|
|
|
|
p = tf.pad(L2, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L3 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L3 = instance_norm(L3, 'di3')
|
|
L3 = tf.nn.leaky_relu(L3)
|
|
|
|
p = tf.pad(L3, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L4 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L4 = instance_norm(L4, 'di4')
|
|
L4 = tf.nn.leaky_relu(L4)
|
|
L4 = layers.flatten(L4)
|
|
|
|
L5 = tf.layers.dense(L4, 1)
|
|
|
|
return L5
|
|
|
|
def discriminator_L(input, reuse, name):
|
|
with tf.variable_scope(name):
|
|
# image is 256 x 256 x input_c_dim
|
|
if reuse:
|
|
tf.get_variable_scope().reuse_variables()
|
|
else:
|
|
assert tf.get_variable_scope().reuse is False
|
|
|
|
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L1 = layers.conv2d(p, 64, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L1 = instance_norm(L1, 'di1l')
|
|
L1 = tf.nn.leaky_relu(L1) # 32 32 64
|
|
|
|
p = tf.pad(L1, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L2 = layers.conv2d(p, 128, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L2 = instance_norm(L2, 'di2l')
|
|
L2 = tf.nn.leaky_relu(L2) # 16 16 128
|
|
|
|
p = tf.pad(L2, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L3 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L3 = instance_norm(L3, 'di3l')
|
|
L3 = tf.nn.leaky_relu(L3) # 8 8 256
|
|
|
|
p = tf.pad(L3, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
|
|
L4 = layers.conv2d(p, 512, [5, 5], stride=2, padding='VALID', activation_fn=None)
|
|
#L4 = instance_norm(L4, 'di4l')
|
|
L4 = tf.nn.leaky_relu(L4) # 4 4 512
|
|
L4 = layers.flatten(L4)
|
|
|
|
L5 = tf.layers.dense(L4, 1)
|
|
|
|
return L5
|
|
|
|
def discriminator_red(input, reuse, name):
|
|
with tf.variable_scope(name):
|
|
# image is 256 x 256 x input_c_dim
|
|
if reuse:
|
|
tf.get_variable_scope().reuse_variables()
|
|
else:
|
|
assert tf.get_variable_scope().reuse is False
|
|
|
|
L1 = convolution_SN(input, 64, 5, 2, 'l1')
|
|
# L1 = instance_norm(L1, 'di1')
|
|
L1 = tf.nn.leaky_relu(L1)
|
|
|
|
L2 = convolution_SN(L1, 128, 5, 2, 'l2')
|
|
# L2 = instance_norm(L2, 'di2')
|
|
L2 = tf.nn.leaky_relu(L2)
|
|
|
|
L3 = convolution_SN(L2, 256, 5, 2, 'l3')
|
|
# L3 = instance_norm(L3, 'di3')
|
|
L3 = tf.nn.leaky_relu(L3)
|
|
|
|
L4 = convolution_SN(L3, 256, 5, 2, 'l4')
|
|
# L4 = instance_norm(L4, 'di4')
|
|
L4 = tf.nn.leaky_relu(L4)
|
|
|
|
L5 = convolution_SN(L4, 256, 5, 2, 'l5')
|
|
# L5 = instance_norm(L5, 'di5')
|
|
L5 = tf.nn.leaky_relu(L5)
|
|
|
|
L6 = convolution_SN(L5, 512, 5, 2, 'l6')
|
|
# L6 = instance_norm(L6, 'di6')
|
|
L6 = tf.nn.leaky_relu(L6)
|
|
|
|
L7 = dense_RED_SN(L6, 'l7')
|
|
|
|
return L7
|
|
|
|
def contextual_block(bg_in, fg_in, mask, k_size, lamda, name, stride=1):
|
|
with tf.variable_scope(name):
|
|
b, h, w, dims = [i.value for i in bg_in.get_shape()]
|
|
temp = tf.image.resize_nearest_neighbor(mask, (h, w))
|
|
temp = tf.expand_dims(temp[:, :, :, 0], 3) # b 128 128 1
|
|
mask_r = tf.tile(temp, [1, 1, 1, dims]) # b 128 128 128
|
|
bg = bg_in * mask_r
|
|
|
|
kn = int((k_size - 1) / 2)
|
|
c = 0
|
|
for p in range(kn, h - kn, stride):
|
|
for q in range(kn, w - kn, stride):
|
|
c += 1
|
|
|
|
patch1 = tf.extract_image_patches(bg, [1, k_size, k_size, 1], [1, stride, stride, 1], [1, 1, 1, 1], 'VALID')
|
|
|
|
patch1 = tf.reshape(patch1, (b, 1, c, k_size*k_size*dims))
|
|
patch1 = tf.reshape(patch1, (b, 1, 1, c, k_size * k_size * dims))
|
|
patch1 = tf.transpose(patch1, [0, 1, 2, 4, 3])
|
|
|
|
patch2 = tf.extract_image_patches(fg_in, [1,k_size,k_size,1], [1,1,1,1], [1,1,1,1], 'SAME')
|
|
ACL = []
|
|
|
|
for ib in range(b):
|
|
|
|
k1 = patch1[ib, :, :, :, :]
|
|
k1d = tf.reduce_sum(tf.square(k1), axis=2)
|
|
k2 = tf.reshape(k1, (k_size, k_size, dims, c))
|
|
ww = patch2[ib, :, :, :]
|
|
wwd = tf.reduce_sum(tf.square(ww), axis=2, keepdims=True)
|
|
ft = tf.expand_dims(ww, 0)
|
|
|
|
CS = tf.nn.conv2d(ft, k1, strides=[1, 1, 1, 1], padding='SAME')
|
|
|
|
tt = k1d + wwd
|
|
|
|
DS1 = tf.expand_dims(tt, 0) - 2 * CS
|
|
|
|
DS2 = (DS1 - tf.reduce_mean(DS1, 3, True)) / reduce_std(DS1, 3, True)
|
|
DS2 = -1 * tf.nn.tanh(DS2)
|
|
|
|
CA = softmax(lamda * DS2)
|
|
|
|
ACLt = tf.nn.conv2d_transpose(CA, k2, output_shape=[1, h, w, dims], strides=[1, 1, 1, 1], padding='SAME')
|
|
ACLt = ACLt / (k_size ** 2)
|
|
|
|
if ib == 0:
|
|
ACL = ACLt
|
|
else:
|
|
ACL = tf.concat((ACL, ACLt), 0)
|
|
|
|
ACL = bg + ACL * (1.0 - mask_r)
|
|
|
|
con1 = tf.concat([bg_in, ACL], 3)
|
|
ACL2 = layers.conv2d(con1, dims, [1, 1], stride=[1, 1], padding='VALID', activation_fn=None, scope='ML')
|
|
ACL2 = tf.nn.elu(ACL2)
|
|
|
|
return ACL2
|
|
|
|
def contextual_block_cs(bg_in, fg_in, mask, k_size, lamda, name, stride=1):
|
|
with tf.variable_scope(name):
|
|
b, h, w, dims = [i.value for i in bg_in.get_shape()]
|
|
temp = tf.image.resize_nearest_neighbor(mask, (h, w))
|
|
temp = tf.expand_dims(temp[:, :, :, 0], 3) # b 128 128 1
|
|
mask_r = tf.tile(temp, [1, 1, 1, dims]) # b 128 128 128
|
|
bg = bg_in * mask_r
|
|
|
|
kn = int((k_size - 1) / 2)
|
|
c = 0
|
|
for p in range(kn, h - kn, stride):
|
|
for q in range(kn, w - kn, stride):
|
|
c += 1
|
|
|
|
patch1 = tf.extract_image_patches(bg, [1, k_size, k_size, 1], [1, stride, stride, 1], [1, 1, 1, 1], 'VALID')
|
|
|
|
patch1 = tf.reshape(patch1, (b, 1, c, k_size*k_size*dims))
|
|
patch1 = tf.reshape(patch1, (b, 1, 1, c, k_size * k_size * dims))
|
|
patch1 = tf.transpose(patch1, [0, 1, 2, 4, 3])
|
|
|
|
patch2 = tf.extract_image_patches(fg_in, [1,k_size,k_size,1], [1,1,1,1], [1,1,1,1], 'SAME')
|
|
ACL = []
|
|
|
|
fuse_weight = tf.reshape(tf.eye(3), [3, 3, 1, 1])
|
|
|
|
for ib in range(b):
|
|
|
|
k1 = patch1[ib, :, :, :, :]
|
|
k2 = k1 / tf.sqrt(tf.reduce_sum(tf.square(k1), axis=2, keepdims=True) + 1e-16)
|
|
k1 = tf.reshape(k1, (k_size, k_size, dims, c))
|
|
ww = patch2[ib, :, :, :]
|
|
ft = ww / tf.sqrt(tf.reduce_sum(tf.square(ww), axis=2, keepdims=True) + 1e-16)
|
|
ft = tf.expand_dims(ft, 0)
|
|
|
|
CA = tf.nn.conv2d(ft, k2, strides=[1, 1, 1, 1], padding='SAME')
|
|
|
|
CA = tf.reshape(CA, [1, h * w, c, 1])
|
|
CA = tf.nn.conv2d(CA, fuse_weight, strides=[1, 1, 1, 1], padding='SAME')
|
|
CA = tf.reshape(CA, [1, h, w, int(math.sqrt(c)), int(math.sqrt(c))])
|
|
CA = tf.transpose(CA, [0, 2, 1, 4, 3])
|
|
CA = tf.reshape(CA, [1, h * w, c, 1])
|
|
CA = tf.nn.conv2d(CA, fuse_weight, strides=[1, 1, 1, 1], padding='SAME')
|
|
CA = tf.reshape(CA, [1, h, w, int(math.sqrt(c)), int(math.sqrt(c))])
|
|
CA = tf.transpose(CA, [0, 2, 1, 4, 3])
|
|
CA = tf.reshape(CA, [1, h, w, c])
|
|
|
|
CA2 = softmax(lamda * CA)
|
|
|
|
ACLt = tf.nn.conv2d_transpose(CA2, k1, output_shape=[1, h, w, dims], strides=[1, 1, 1, 1], padding='SAME')
|
|
ACLt = ACLt / (k_size ** 2)
|
|
|
|
if ib == 0:
|
|
ACL = ACLt
|
|
else:
|
|
ACL = tf.concat((ACL, ACLt), 0)
|
|
|
|
ACL2 = bg + ACL * (1.0 - mask_r)
|
|
|
|
return ACL2
|
|
|