DeepCreamPy/decensor.py
2019-08-06 13:49:54 -04:00

234 lines
9.8 KiB
Python

#!/usr/bin/env python3
try:
import numpy as np
from PIL import Image
import os
from copy import deepcopy
import config
import file
from libs.pconv_hybrid_model import PConvUnet
from libs.utils import *
except ImportError as err:
print("Error: ", err)
print("Could not import modules. Make sure all dependencies are installed.")
exit(1)
class Decensor:
def __init__(self):
self.args = config.get_args()
self.is_mosaic = self.args.is_mosaic
self.mask_color = [float(v/255) for v in self.args.mask_color] # normalize mask color
if not os.path.exists(self.args.decensor_output_path):
os.makedirs(self.args.decensor_output_path)
self.load_model()
def get_mask(self, colored):
mask = np.ones(colored.shape, np.uint8)
i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
mask[0, i, j] = 0
return mask
def load_model(self):
self.model = PConvUnet()
self.model.load(
r"./models/model.h5",
train_bn=False,
lr=0.00005
)
def decensor_all_images_in_folder(self):
# load model once at beginning and reuse same model
# self.load_model()
color_dir = self.args.decensor_input_path
file_names = os.listdir(color_dir)
input_dir = self.args.decensor_input_path
output_dir = self.args.decensor_output_path
# Change False to True before release --> file.check_file( input_dir, output_dir, True)
file_names, self.files_removed = file.check_file(input_dir, output_dir, False)
# convert all images into np arrays and put them in a list
for file_name in file_names:
color_file_path = os.path.join(color_dir, file_name)
color_bn, color_ext = os.path.splitext(file_name)
if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
print("--------------------------------------------------------------------------")
print("Decensoring the image {}".format(color_file_path))
try:
colored_img = Image.open(color_file_path)
except:
print("Cannot identify image file (" + str(color_file_path)+")")
self.files_removed.append((color_file_path, 3))
# incase of abnormal file format change (ex : text.txt -> text.png)
continue
# if we are doing a mosaic decensor
if self.is_mosaic:
# get the original file that hasn't been colored
ori_dir = self.args.decensor_input_original_path
# since the original image might not be a png, test multiple file formats
valid_formats = {".png", ".jpg", ".jpeg"}
for test_file_name in os.listdir(ori_dir):
test_bn, test_ext = os.path.splitext(test_file_name)
if (test_bn == color_bn) and (test_ext.casefold() in valid_formats):
ori_file_path = os.path.join(ori_dir, test_file_name)
ori_img = Image.open(ori_file_path)
# colored_img.show()
self.decensor_image(ori_img, colored_img, file_name)
break
else: # for...else, i.e if the loop finished without encountering break
print("Corresponding original, uncolored image not found in {}".format(color_file_path))
print("Check if it exists and is in the PNG or JPG format.")
else:
self.decensor_image(colored_img, colored_img, file_name)
else:
print("--------------------------------------------------------------------------")
print("Iregular file deteced : "+str(color_file_path))
print("--------------------------------------------------------------------------")
if(self.files_removed is not None):
file.error_messages(None, self.files_removed)
if(self.args.autoclose == False):
input("\nPress anything to end...")
#decensors one image at a time
#TODO: decensor all cropped parts of the same image in a batch (then i need input for colored an array of those images and make additional changes)
def decensor_image(self, ori, colored, file_name=None):
width, height = ori.size
# save the alpha channel if the image has an alpha channel
has_alpha = False
if (ori.mode == "RGBA"):
has_alpha = True
alpha_channel = np.asarray(ori)[:, :, 3]
alpha_channel = np.expand_dims(alpha_channel, axis=-1)
ori = ori.convert('RGB')
ori_array = image_to_array(ori)
ori_array = np.expand_dims(ori_array, axis=0)
if self.is_mosaic:
# if mosaic decensor, mask is empty
# mask = np.ones(ori_array.shape, np.uint8)
# print(mask.shape)
colored = colored.convert('RGB')
color_array = image_to_array(colored)
color_array = np.expand_dims(color_array, axis=0)
mask = self.get_mask(color_array)
# mask_reshaped = mask[0,:,:,:] * 255.0
# mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# mask_img.show()
else:
mask = self.get_mask(ori_array)
# colored image is only used for finding the regions
regions = find_regions(mask) # use mask to find all the colored regions
print("Found {region_count} censored regions in this image!".format(region_count=len(regions)))
if len(regions) == 0 and not self.is_mosaic:
print("No green regions detected! Make sure you're using exactly the right color.")
return
output_img_array = ori_array[0].copy()
for region_counter, region in enumerate(regions, 1):
bounding_box = expand_bounding(ori, region)
crop_img = ori.crop(bounding_box)
# crop_img.show()
# convert mask back to image
mask_reshaped = mask[0, :, :, :] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# resize the cropped images
crop_img = crop_img.resize((512, 512))
crop_img_array = image_to_array(crop_img)
crop_img_array = np.expand_dims(crop_img_array, axis=0)
# resize the mask images
mask_img = mask_img.crop(bounding_box)
mask_img = mask_img.resize((512, 512))
# mask_img.show()
# convert mask_img back to array
mask_array = image_to_array(mask_img)
# the mask has been upscaled so there will be values not equal to 0 or 1
mask_array[mask_array > 0] = 1
if self.is_mosaic:
a, b = np.where(np.all(mask_array == 0, axis=-1))
print(a, b)
coords = [coord for coord in zip(a, b) if ((coord[0] + coord[1]) % 2 == 0)]
a, b = zip(*coords)
mask_array[a, b] = 1
# mask_array = mask_array * 255.0
# img = Image.fromarray(mask_array.astype('uint8'))
# img.show()
# return
mask_array = np.expand_dims(mask_array, axis=0)
# Run predictions for this batch of images
pred_img_array = self.model.predict([crop_img_array, mask_array, mask_array])
pred_img_array = pred_img_array * 255.0
pred_img_array = np.squeeze(pred_img_array, axis=0)
# scale prediction image back to original size
bounding_width = bounding_box[2]-bounding_box[0]
bounding_height = bounding_box[3]-bounding_box[1]
# convert np array to image
# print(bounding_width,bounding_height)
# print(pred_img_array.shape)
pred_img = Image.fromarray(pred_img_array.astype('uint8'))
# pred_img.show()
pred_img = pred_img.resize((bounding_width, bounding_height), resample=Image.BICUBIC)
pred_img_array = image_to_array(pred_img)
# print(pred_img_array.shape)
pred_img_array = np.expand_dims(pred_img_array, axis=0)
# copy the decensored regions into the output image
for i in range(len(ori_array)):
for col in range(bounding_width):
for row in range(bounding_height):
bounding_width_index = col + bounding_box[0]
bounding_height_index = row + bounding_box[1]
if (bounding_width_index, bounding_height_index) in region:
output_img_array[bounding_height_index][bounding_width_index] = pred_img_array[i, :, :, :][row][col]
print("{region_counter} out of {region_count} regions decensored.".format(region_counter=region_counter, region_count=len(regions)))
output_img_array = output_img_array * 255.0
# restore the alpha channel if the image had one
if has_alpha:
output_img_array = np.concatenate((output_img_array, alpha_channel), axis=2)
output_img = Image.fromarray(output_img_array.astype('uint8'))
if file_name != None:
# save the decensored image
#file_name, _ = os.path.splitext(file_name)
save_path = os.path.join(self.args.decensor_output_path, file_name)
output_img.save(save_path)
print("Decensored image saved to {save_path}!".format(save_path=save_path))
return
else:
print("Decensored image. Returning it.")
return output_img
if __name__ == '__main__':
decensor = Decensor()
decensor.decensor_all_images_in_folder()