DeepCreamPy/decensor.py
2018-02-10 22:19:48 -05:00

96 lines
3.0 KiB
Python

import numpy as np
import tensorflow as tf
from PIL import Image
import tqdm
import os
import matplotlib.pyplot as plt
import sys
sys.path.append('..')
from model import Model
IMAGE_SIZE = 128
LOCAL_SIZE = 64
HOLE_MIN = 24
HOLE_MAX = 48
BATCH_SIZE = 16
image_path = './lfw.npy'
def test():
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op)
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_test = np.load(test_npy)
np.random.shuffle(x_test)
x_test = np.array([a / 127.5 - 1 for a in x_test])
step_num = int(len(x_test) / BATCH_SIZE)
cnt = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
_, mask_batch = get_points()
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
for i in range(BATCH_SIZE):
cnt += 1
raw = x_batch[i]
raw = np.array((raw + 1) * 127.5, dtype=np.uint8)
masked = raw * (1 - mask_batch[i]) + np.ones_like(raw) * mask_batch[i] * 255
img = completion[i]
img = np.array((img + 1) * 127.5, dtype=np.uint8)
dst = './output/{}.jpg'.format("{0:06d}".format(cnt))
output_image([['Input', masked], ['Output', img], ['Ground Truth', raw]], dst)
def get_points():
points = []
mask = []
for i in range(BATCH_SIZE):
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
points.append([x1, y1, x2, y2])
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
p2 = p1 + w
q2 = q1 + h
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
m[q1:q2 + 1, p1:p2 + 1] = 1
mask.append(m)
return np.array(points), np.array(mask)
def output_image(images, dst):
fig = plt.figure()
for i, image in enumerate(images):
text, img = image
fig.add_subplot(1, 3, i + 1)
plt.imshow(img)
plt.tick_params(labelbottom='off')
plt.tick_params(labelleft='off')
plt.gca().get_xaxis().set_ticks_position('none')
plt.gca().get_yaxis().set_ticks_position('none')
plt.xlabel(text)
plt.savefig(dst)
plt.close()
if __name__ == '__main__':
test()