mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-01-07 09:54:45 +00:00
113 lines
4.0 KiB
Python
Executable File
113 lines
4.0 KiB
Python
Executable File
import tensorflow as tf
|
|
import os
|
|
import numpy as np
|
|
import module as mm
|
|
|
|
#suppress tensorflow deprecation warnings
|
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
|
|
|
class InpaintNN:
|
|
|
|
def __init__(self, input_height=256, input_width=256, batch_size = 1, bar_model_name=None, bar_checkpoint_name=None, mosaic_model_name=None, mosaic_checkpoint_name = None, is_mosaic=False):
|
|
self.bar_model_name = bar_model_name
|
|
self.bar_checkpoint_name = bar_checkpoint_name
|
|
self.mosaic_model_name = mosaic_model_name
|
|
self.mosaic_checkpoint_name = mosaic_checkpoint_name
|
|
self.is_mosaic = is_mosaic
|
|
|
|
self.input_height = input_height
|
|
self.input_width = input_width
|
|
self.batch_size = batch_size
|
|
|
|
self.check_model_file()
|
|
self.build_model()
|
|
|
|
def check_model_file(self):
|
|
if not os.path.exists(self.bar_model_name) or not os.path.exists(self.mosaic_model_name) :
|
|
print("\nMissing Train Model, download train model")
|
|
print("Read : https://github.com/deeppomf/DeepCreamPy/blob/master/docs/INSTALLATION.md#run-code-yourself \n")
|
|
exit(-1)
|
|
|
|
def build_model(self):
|
|
# ------- variables
|
|
|
|
self.X = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
|
|
self.Y = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
|
|
|
|
self.MASK = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
|
|
IT = tf.placeholder(tf.float32)
|
|
|
|
# ------- structure
|
|
|
|
input = tf.concat([self.X, self.MASK], 3)
|
|
|
|
vec_en = mm.encoder(input, reuse=False, name='G_en')
|
|
|
|
vec_con = mm.contextual_block(vec_en, vec_en, self.MASK, 3, 50.0, 'CB1', stride=1)
|
|
|
|
I_co = mm.decoder(vec_en, self.input_height, self.input_height, reuse=False, name='G_de')
|
|
I_ge = mm.decoder(vec_con, self.input_height, self.input_height, reuse=True, name='G_de')
|
|
|
|
self.image_result = I_ge * (1-self.MASK) + self.Y*self.MASK
|
|
|
|
D_real_red = mm.discriminator_red(self.Y, reuse=False, name='disc_red')
|
|
D_fake_red = mm.discriminator_red(self.image_result, reuse=True, name='disc_red')
|
|
|
|
# ------- Loss
|
|
|
|
Loss_D_red = tf.reduce_mean(tf.nn.relu(1+D_fake_red)) + tf.reduce_mean(tf.nn.relu(1-D_real_red))
|
|
|
|
Loss_D = Loss_D_red
|
|
|
|
Loss_gan_red = -tf.reduce_mean(D_fake_red)
|
|
|
|
Loss_gan = Loss_gan_red
|
|
|
|
Loss_s_re = tf.reduce_mean(tf.abs(I_ge - self.Y))
|
|
Loss_hat = tf.reduce_mean(tf.abs(I_co - self.Y))
|
|
|
|
A = tf.image.rgb_to_yuv((self.image_result+1)/2.0)
|
|
A_Y = tf.to_int32(A[:, :, :, 0:1]*255.0)
|
|
|
|
B = tf.image.rgb_to_yuv((self.Y+1)/2.0)
|
|
B_Y = tf.to_int32(B[:, :, :, 0:1]*255.0)
|
|
|
|
ssim = tf.reduce_mean(tf.image.ssim(A_Y, B_Y, 255.0))
|
|
|
|
alpha = IT/1000000
|
|
|
|
Loss_G = 0.1*Loss_gan + 10*Loss_s_re + 5*(1-alpha) * Loss_hat
|
|
|
|
# --------------------- variable & optimizer
|
|
|
|
var_D = [v for v in tf.global_variables() if v.name.startswith('disc_red')]
|
|
var_G = [v for v in tf.global_variables() if v.name.startswith('G_en') or v.name.startswith('G_de') or v.name.startswith('CB1')]
|
|
|
|
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
|
|
|
|
with tf.control_dependencies(update_ops):
|
|
optimize_D = tf.train.AdamOptimizer(learning_rate=0.0004, beta1=0.5, beta2=0.9).minimize(Loss_D, var_list=var_D)
|
|
optimize_G = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.5, beta2=0.9).minimize(Loss_G, var_list=var_G)
|
|
|
|
config = tf.ConfigProto()
|
|
# config.gpu_options.per_process_gpu_memory_fraction = 0.4
|
|
# config.gpu_options.allow_growth = False
|
|
|
|
self.sess = tf.Session(config=config)
|
|
|
|
init = tf.global_variables_initializer()
|
|
self.sess.run(init)
|
|
saver = tf.train.Saver()
|
|
|
|
if self.is_mosaic:
|
|
Restore = tf.train.import_meta_graph(self.mosaic_model_name)
|
|
Restore.restore(self.sess, tf.train.latest_checkpoint(self.mosaic_checkpoint_name))
|
|
else:
|
|
Restore = tf.train.import_meta_graph(self.bar_model_name)
|
|
Restore.restore(self.sess, tf.train.latest_checkpoint(self.bar_checkpoint_name))
|
|
|
|
def predict(self, censored, unused, mask):
|
|
img_sample = self.sess.run(self.image_result, feed_dict={self.X: censored, self.Y: unused, self.MASK: mask})
|
|
|
|
return img_sample
|