DeepCreamPy/train.py
2018-02-26 10:41:19 -05:00

144 lines
6.0 KiB
Python

import numpy as np
import tensorflow as tf
from PIL import Image
import tqdm
import scipy.ndimage
from model import Model
import load
from config import *
PRETRAIN_EPOCH = 100
#the chance the rectangle crop will be rotated
def train(args):
x = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, args.input_channel_size])
mask = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, 1])
local_x = tf.placeholder(tf.float32, [args.batch_size, args.local_image_size, args.local_image_size, args.input_channel_size])
global_completion = tf.placeholder(tf.float32, [args.batch_size, args.image_size, args.image_size, args.input_channel_size])
local_completion = tf.placeholder(tf.float32, [args.batch_size, args.local_image_size, args.local_image_size, args.input_channel_size])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=args.batch_size)
sess = tf.Session()
global_step = tf.Variable(0, name='global_step', trainable=False)
epoch = tf.Variable(0, name='epoch', trainable=False)
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables)
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables)
init_op = tf.global_variables_initializer()
sess.run(init_op)
if tf.train.get_checkpoint_state('./models'):
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_train, x_test = load.load()
x_train = np.array([a / 127.5 - 1 for a in x_train])
x_test = np.array([a / 127.5 - 1 for a in x_test])
step_num = int(len(x_train) / args.batch_size)
while True:
sess.run(tf.assign(epoch, tf.add(epoch, 1)))
print('epoch: {}'.format(sess.run(epoch)))
np.random.shuffle(x_train)
# Completion
if sess.run(epoch) <= PRETRAIN_EPOCH:
g_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * args.batch_size:(i + 1) * args.batch_size]
points_batch, mask_batch = get_points()
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
g_loss_value += g_loss
print('Completion loss: {}'.format(g_loss_value))
np.random.shuffle(x_test)
x_batch = x_test[:args.batch_size]
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
if sess.run(epoch) == PRETRAIN_EPOCH:
saver.save(sess, './models/pretrained', write_meta_graph=False)
# Discrimitation
else:
g_loss_value = 0
d_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * args.batch_size:(i + 1) * args.batch_size]
points_batch, mask_batch = get_points()
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
g_loss_value += g_loss
local_x_batch = []
local_completion_batch = []
for i in range(args.batch_size):
x1, y1, x2, y2 = points_batch[i]
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :])
local_completion_batch.append(completion[i][y1:y2, x1:x2, :])
local_x_batch = np.array(local_x_batch)
local_completion_batch = np.array(local_completion_batch)
_, d_loss = sess.run(
[d_train_op, model.d_loss],
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True})
d_loss_value += d_loss
print('Completion loss: {}'.format(g_loss_value))
print('Discriminator loss: {}'.format(d_loss_value))
np.random.shuffle(x_test)
x_batch = x_test[:args.batch_size]
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
def get_points():
points = []
mask = []
for i in range(args.batch_size):
x1, y1 = np.random.randint(0, args.image_size - args.local_image_size + 1, 2)
x2, y2 = np.array([x1, y1]) + args.local_image_size
points.append([x1, y1, x2, y2])
w, h = np.random.randint(args.min_mask_size, args.max_mask_size + 1, 2)
p1 = x1 + np.random.randint(0, args.local_image_size - w)
q1 = y1 + np.random.randint(0, args.local_image_size - h)
p2 = p1 + w
q2 = q1 + h
m = np.zeros((args.image_size, args.image_size, 1), dtype=np.uint8)
m[q1:q2 + 1, p1:p2 + 1] = 1
if (np.random.random() < args.rotate_chance):
#rotate random amount between 0 and 90 degrees
m = scipy.ndimage.rotate(m, np.random.random()*90, reshape = False)
#set all elements greater than 0 to 1
m[m > 0.5] = 1
mask.append(m)
return np.array(points), np.array(mask)
if __name__ == '__main__':
train(args)