deeppomf's DeepCreamPy + some updates
Go to file
2022-09-09 03:56:13 +03:00
.github/ISSUE_TEMPLATE Update issue templates 2018-11-04 11:24:46 +00:00
decensor_input Added .gitignores to avoid accidentally commiting test files 2019-01-29 11:01:58 +01:00
decensor_input_original Added .gitignores to avoid accidentally commiting test files 2019-01-29 11:01:58 +01:00
decensor_output Added .gitignores to avoid accidentally commiting test files 2019-01-29 11:01:58 +01:00
docs Update USAGE.md 2019-10-31 18:26:17 -04:00
libs Add DCPv2 files 2019-08-07 04:04:56 -04:00
models added ignore in models and changes argument names not to confuse 2019-08-10 13:07:32 +09:00
readme_images [ImgBot] Optimize images 2018-10-31 13:36:06 +00:00
.gitignore added ignore in models and changes argument names not to confuse 2019-08-10 13:07:32 +09:00
config.py Add message box for decensoring 2019-10-09 01:20:28 -04:00
decensor.py allow using program from CLI 2022-09-09 03:55:34 +03:00
file.py Add variations feature 2019-09-29 17:38:21 -04:00
LICENSE.md Switch to AGPL License 2020-04-21 22:10:11 -04:00
main.py integrate in one UI 2020-01-03 01:53:57 +09:00
model.py check missing file for non-binary users 2020-01-01 15:59:10 +09:00
module.py Add DCPv2 files 2019-08-07 04:04:56 -04:00
ops.py Add DCPv2 files 2019-08-07 04:04:56 -04:00
README.md Removed donation link because it might be compromised 2021-04-27 20:59:24 +03:00
requirements-cpu.txt downgrade tensorflow to version compatible with python3.7 2022-09-09 03:56:13 +03:00
requirements-gpu.txt Update requirements-gpu.txt 2020-04-21 23:25:13 -04:00
signals.py add/remove signals that are/aren't used 2020-01-03 01:51:56 +09:00

DeepCreamPy

Decensoring Hentai with Deep Neural Networks.

GitHub release GitHub downloads GitHub downloads GitHub issues

A deep learning-based tool to automatically replace censored artwork in hentai with plausible reconstructions.

Before DeepCreamPy can be used, the user must color censored regions in their hentai green with an image editing program (e.g. GIMP, Photoshop). DeepCreamPy takes the green colored images as input, and a neural network automatically fills in the censored regions.

You can download the latest release for Windows 64-bit here.

For users interested in compiling DeepCreamPy themselves, DeepCreamPy can run on Windows, Mac, and Linux.

Please before you open a new issue check closed issues and check the table of contents.

Features

  • Decensoring images of any size
  • Decensoring of ANY shaped censor (e.g. black lines, pink hearts, etc.)
  • Decensoring of mosaic decensors
  • Limited support for decensoring black and white/monochrome images
  • Generate multiple variations of decensors from the same image

Limitations

The decensorship is for color hentai images that have minor to moderate censorship of the human reproductive organs. If an organ is completely censored out, decensoring will be ineffective.

It does NOT work with:

  • Hentai with screentones (e.g. printed hentai)
  • Real life pornographic material
  • Censorship of nipples
  • Censorship of lower orifice of the alimentary canal
  • Animated gifs/videos

Table of Contents

Setup:

Usage:

Miscellaneous:

To do

  • Resolve all Tensorflow compatibility problems
  • Finish the user interface
  • Add error log

Contributions

If you want to make a pull request to DeepCreamPy, you must first sign our Contributor License Agreement (the "CLA"). Then I can accept your pull requests.

Special thanks to ccppoo, IAmTheRedSpy, 0xb8, deniszh, Smethan, harjitmoe, itsVale, StartleStars, and SoftArmpit for their contributions!

License

Source code and official releases/binaries are distributed under the GNU Affero General Public License v3.0.

Acknowledgements

Example mermaid image by Shurajo & AVALANCHE Game Studio under CC BY 3.0 License. The example image is modified from the original, which can be found here.

Neural network code is modified from Forty-lock's project PEPSI, which is the official implementation of the paper PEPSI : Fast Image Inpainting With Parallel Decoding Network. PEPSI is licensed under the MIT license.

Training data is modified from gwern's project Danbooru2017: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset and other sources.

See ACKNOWLEDGEMENTS.md for full license text of these projects.