mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2024-12-01 12:59:34 +00:00
149 lines
6.2 KiB
Python
149 lines
6.2 KiB
Python
import numpy as np
|
|
import tensorflow as tf
|
|
from PIL import Image
|
|
import tqdm
|
|
import scipy.ndimage
|
|
import os
|
|
|
|
from model import Model
|
|
import load
|
|
from config import *
|
|
|
|
PRETRAIN_EPOCH = 100
|
|
|
|
def train(args):
|
|
x = tf.placeholder(tf.float32, [args.batch_size, args.input_size, args.input_size, args.input_channel_size])
|
|
mask = tf.placeholder(tf.float32, [args.batch_size, args.input_size, args.input_size, 1])
|
|
local_x = tf.placeholder(tf.float32, [args.batch_size, args.local_input_size, args.local_input_size, args.input_channel_size])
|
|
global_completion = tf.placeholder(tf.float32, [args.batch_size, args.input_size, args.input_size, args.input_channel_size])
|
|
local_completion = tf.placeholder(tf.float32, [args.batch_size, args.local_input_size, args.local_input_size, args.input_channel_size])
|
|
is_training = tf.placeholder(tf.bool, [])
|
|
|
|
model = Model(x, mask, local_x, global_completion, local_completion, is_training, batch_size=args.batch_size)
|
|
sess = tf.Session()
|
|
global_step = tf.Variable(0, name='global_step', trainable=False)
|
|
epoch = tf.Variable(0, name='epoch', trainable=False)
|
|
|
|
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
|
|
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables)
|
|
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables)
|
|
|
|
init_op = tf.global_variables_initializer()
|
|
sess.run(init_op)
|
|
|
|
if args.continue_training:
|
|
if tf.train.get_checkpoint_state('./models'):
|
|
print("Continuing training from checkpoint.")
|
|
saver = tf.train.Saver()
|
|
saver.restore(sess, './models/latest')
|
|
else:
|
|
print("Checkpoint not found! Training new model from scratch.")
|
|
|
|
x_train, x_test = load.load()
|
|
x_train = np.array([a / 127.5 - 1 for a in x_train])
|
|
x_test = np.array([a / 127.5 - 1 for a in x_test])
|
|
|
|
step_num = int(len(x_train) / args.batch_size)
|
|
|
|
while True:
|
|
sess.run(tf.assign(epoch, tf.add(epoch, 1)))
|
|
print('epoch: {}'.format(sess.run(epoch)))
|
|
|
|
np.random.shuffle(x_train)
|
|
|
|
# Completion
|
|
if sess.run(epoch) <= PRETRAIN_EPOCH:
|
|
g_loss_value = 0
|
|
for i in tqdm.tqdm(range(step_num)):
|
|
x_batch = x_train[i * args.batch_size:(i + 1) * args.batch_size]
|
|
points_batch, mask_batch = get_points()
|
|
|
|
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
|
|
g_loss_value += g_loss
|
|
|
|
print('Completion loss: {}'.format(g_loss_value))
|
|
|
|
np.random.shuffle(x_test)
|
|
x_batch = x_test[:args.batch_size]
|
|
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
|
|
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
|
|
result = Image.fromarray(sample)
|
|
result.save(args.training_samples_path + '/{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
|
|
|
|
saver = tf.train.Saver()
|
|
saver.save(sess, './models/latest', write_meta_graph=False)
|
|
if sess.run(epoch) == PRETRAIN_EPOCH:
|
|
saver.save(sess, './models/pretrained', write_meta_graph=False)
|
|
|
|
|
|
# Discrimitation
|
|
else:
|
|
g_loss_value = 0
|
|
d_loss_value = 0
|
|
for i in tqdm.tqdm(range(step_num)):
|
|
x_batch = x_train[i * args.batch_size:(i + 1) * args.batch_size]
|
|
points_batch, mask_batch = get_points()
|
|
|
|
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, is_training: True})
|
|
g_loss_value += g_loss
|
|
|
|
local_x_batch = []
|
|
local_completion_batch = []
|
|
for i in range(args.batch_size):
|
|
x1, y1, x2, y2 = points_batch[i]
|
|
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :])
|
|
local_completion_batch.append(completion[i][y1:y2, x1:x2, :])
|
|
local_x_batch = np.array(local_x_batch)
|
|
local_completion_batch = np.array(local_completion_batch)
|
|
|
|
_, d_loss = sess.run(
|
|
[d_train_op, model.d_loss],
|
|
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True})
|
|
d_loss_value += d_loss
|
|
|
|
print('Completion loss: {}'.format(g_loss_value))
|
|
print('Discriminator loss: {}'.format(d_loss_value))
|
|
|
|
np.random.shuffle(x_test)
|
|
x_batch = x_test[:args.batch_size]
|
|
completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False})
|
|
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
|
|
result = Image.fromarray(sample)
|
|
result.save(args.training_samples_path + '{}.jpg'.format("{0:06d}".format(sess.run(epoch))))
|
|
|
|
saver = tf.train.Saver()
|
|
saver.save(sess, './models/latest', write_meta_graph=False)
|
|
|
|
|
|
def get_points():
|
|
points = []
|
|
mask = []
|
|
for i in range(args.batch_size):
|
|
x1, y1 = np.random.randint(0, args.input_size - args.local_input_size + 1, 2)
|
|
x2, y2 = np.array([x1, y1]) + args.local_input_size
|
|
points.append([x1, y1, x2, y2])
|
|
|
|
w, h = np.random.randint(args.min_mask_size, args.max_mask_size + 1, 2)
|
|
p1 = x1 + np.random.randint(0, args.local_input_size - w)
|
|
q1 = y1 + np.random.randint(0, args.local_input_size - h)
|
|
p2 = p1 + w
|
|
q2 = q1 + h
|
|
|
|
m = np.zeros((args.input_size, args.input_size, 1), dtype=np.uint8)
|
|
m[q1:q2 + 1, p1:p2 + 1] = 1
|
|
|
|
if (np.random.random() < args.rotate_chance):
|
|
#rotate random amount between 0 and 90 degrees
|
|
m = scipy.ndimage.rotate(m, np.random.random()*90, reshape = False)
|
|
#set all elements greater than 0 to 1
|
|
m[m > 0.5] = 1
|
|
|
|
mask.append(m)
|
|
|
|
return np.array(points), np.array(mask)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if not os.path.exists(args.training_samples_path):
|
|
os.makedirs(args.training_samples_path)
|
|
train(args) |