DeepCreamPy/ops.py
2019-08-07 04:04:56 -04:00

233 lines
7.8 KiB
Python
Executable File

import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
import random as rr
import math as mt
import cv2
from scipy import misc
def instance_norm(input, name="instance_norm"):
with tf.variable_scope(name):
depth = input.get_shape()[3]
scale = tf.get_variable("scale", [depth], initializer=tf.random_normal_initializer(1.0, 0.02, dtype=tf.float32))
offset = tf.get_variable("offset", [depth], initializer=tf.constant_initializer(0.0))
mean, variance = tf.nn.moments(input, axes=[1,2], keep_dims=True)
epsilon = 1e-5
inv = tf.rsqrt(variance + epsilon)
normalized = (input-mean)*inv
return scale*normalized + offset
def make_sq_mask(size, m_size, batch_size):
start_x = rr.randint(0, size - m_size-1)
start_y = rr.randint(0, size - m_size-1)
temp = np.ones([batch_size, size, size, 3])
temp[:, start_x:start_x + m_size, start_y:start_y + m_size, 0:3] *= 0
return temp, start_x, start_y
def softmax(input):
k = tf.exp(input - 3)
k = tf.reduce_sum(k, 3, True)
# k = k - num * tf.ones_like(k)
ouput = tf.exp(input - 3) / k
return ouput
def reduce_var(x, axis=None, keepdims=False):
"""Variance of a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to compute the variance.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
# Returns
A tensor with the variance of elements of `x`.
"""
m = tf.reduce_mean(x, axis=axis, keepdims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keepdims=keepdims)
def reduce_std(x, axis=None, keepdims=False):
"""Standard deviation of a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to compute the standard deviation.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
# Returns
A tensor with the standard deviation of elements of `x`.
"""
return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims))
def l2_norm(v, eps=1e-12):
return v / (tf.reduce_sum(v ** 2) ** 0.5 + eps)
def ff_mask(size, b_zise, maxLen, maxWid, maxAng, maxNum, maxVer, minLen = 20, minWid = 15, minVer = 5):
mask = np.ones((b_zise, size, size, 3))
num = rr.randint(3, maxNum)
for i in range(num):
startX = rr.randint(0, size)
startY = rr.randint(0, size)
numVer = rr.randint(minVer, maxVer)
width = rr.randint(minWid, maxWid)
for j in range(numVer):
angle = rr.uniform(-maxAng, maxAng)
length = rr.randint(minLen, maxLen)
endX = min(size-1, max(0, int(startX + length * mt.sin(angle))))
endY = min(size-1, max(0, int(startY + length * mt.cos(angle))))
if endX >= startX:
lowx = startX
highx = endX
else:
lowx = endX
highx = startX
if endY >= startY:
lowy = startY
highy = endY
else:
lowy = endY
highy = startY
if abs(startY-endY) + abs(startX - endX) != 0:
wlx = max(0, lowx-int(abs(width * mt.cos(angle))))
whx = min(size - 1, highx+1 + int(abs(width * mt.cos(angle))))
wly = max(0, lowy - int(abs(width * mt.sin(angle))))
why = min(size - 1, highy+1 + int(abs(width * mt.sin(angle))))
for x in range(wlx, whx):
for y in range(wly, why):
d = abs((endY-startY)*x - (endX -startX)*y - endY*startX + startY*endX) / mt.sqrt((startY-endY)**2 + (startX -endX)**2)
if d <= width:
mask[:, x, y, :] = 0
wlx = max(0, lowx-width)
whx = min(size - 1, highx+width+1)
wly = max(0, lowy - width)
why = min(size - 1, highy + width + 1)
for x2 in range(wlx, whx):
for y2 in range(wly, why):
d1 = (startX - x2) ** 2 + (startY - y2) ** 2
d2 = (endX - x2) ** 2 + (endY - y2) ** 2
if np.sqrt(d1) <= width:
mask[:, x2, y2, :] = 0
if np.sqrt(d2) <= width:
mask[:, x2, y2, :] = 0
startX = endX
startY = endY
return mask
def ff_mask_batch(size, b_size, maxLen, maxWid, maxAng, maxNum, maxVer, minLen = 20, minWid = 15, minVer = 5):
mask = None
temp = ff_mask(size, 1, maxLen, maxWid, maxAng, maxNum, maxVer, minLen=minLen, minWid=minWid, minVer=minVer)
temp = temp[0]
for ib in range(b_size):
if ib == 0:
mask = np.expand_dims(temp, 0)
else:
mask = np.concatenate((mask, np.expand_dims(temp, 0)), 0)
temp = cv2.rotate(temp, cv2.ROTATE_90_CLOCKWISE)
if ib == 3:
temp = cv2.flip(temp, 0)
return mask
def spectral_norm(w, name, iteration=1):
w_shape = w.shape.as_list()
w = tf.reshape(w, [-1, w_shape[-1]])
u = tf.get_variable(name+"u", [1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable=False)
u_hat = u
v_hat = None
for i in range(iteration):
"""
power iteration
Usually iteration = 1 will be enough
"""
v_ = tf.matmul(u_hat, tf.transpose(w))
v_hat = l2_norm(v_)
u_ = tf.matmul(v_hat, w)
u_hat = l2_norm(u_)
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat))
w_norm = w / sigma
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = tf.reshape(w_norm, w_shape)
return w_norm
def convolution_SN(tensor, output_dim, kernel_size, stride, name):
_, h, w, c = [i.value for i in tensor.get_shape()]
w = tf.get_variable(name=name + 'w', shape=[kernel_size, kernel_size, c, output_dim], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + 'b', shape=[output_dim], initializer=tf.constant_initializer(0.0))
output = tf.nn.conv2d(tensor, filter=spectral_norm(w, name=name + 'w'), strides=[1, stride, stride, 1], padding='SAME') + b
return output
def dense_SN(tensor, output_dim, name):
_, h, w, c = [i.value for i in tensor.get_shape()]
w = tf.get_variable(name=name + 'w', shape=[h, w, c, output_dim], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + 'b', shape=[output_dim], initializer=tf.constant_initializer(0.0))
output = tf.nn.conv2d(tensor, filter=spectral_norm(w, name=name + 'w'), strides=[1, 1, 1, 1], padding='VALID') + b
return output
def dense_RED_SN(tensor, name):
sn_w = None
_, h, w, c = [i.value for i in tensor.get_shape()]
h = int(h)
w = int(w)
c = int(c)
weight = tf.get_variable(name=name + '_w', shape=[h*w, 1, c, 1], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + '_b', shape=[1, h, w, 1], initializer=tf.constant_initializer(0.0))
for it in range(h*w):
w_pixel = weight[it:it+1, :, :, :]
sn_w_pixel = spectral_norm(w_pixel, name=name + 'w_%d' %it)
if it == 0:
sn_w = sn_w_pixel
else:
sn_w = tf.concat([sn_w, sn_w_pixel], axis=0)
w_rs = tf.reshape(sn_w, [h, w, c, 1])
w_rs_t = tf.transpose(w_rs, [3, 0, 1, 2])
output_RED = tf.reduce_sum(tensor*w_rs_t + b, axis=3, keepdims=True)
return output_RED