mirror of
https://github.com/Deepshift/DeepCreamPy.git
synced 2025-03-25 10:43:28 +00:00
readme, decensor
This commit is contained in:
parent
dd41595ffa
commit
a9d7000736
@ -3,6 +3,8 @@
|
||||
|
||||
This project applies an implementation of [Globally and Locally Consistent Image Completion](http://hi.cs.waseda.ac.jp/%7Eiizuka/projects/completion/data/completion_sig2017.pdf) to the problem of hentai decensorship. Using a deep fully convolutional neural network, DeepMindBreak can replace censored artwork in hentai with plausible reconstructions. The user needs to only specify the censored regions.
|
||||
|
||||
![Censored, decensored][/readme_images/collage.png]
|
||||
|
||||
# Limitations
|
||||
|
||||
This project is LIMITED in capability. It is a proof of concept of ongoing research.
|
||||
|
@ -7,12 +7,13 @@ import matplotlib.pyplot as plt
|
||||
import sys
|
||||
sys.path.append('..')
|
||||
from model import Model
|
||||
from poisson_blend import blend
|
||||
|
||||
IMAGE_SIZE = 128
|
||||
LOCAL_SIZE = 64
|
||||
HOLE_MIN = 24
|
||||
HOLE_MAX = 48
|
||||
BATCH_SIZE = 3
|
||||
BATCH_SIZE = 1
|
||||
|
||||
image_folder = 'decensor_input_images/'
|
||||
mask_color = [0, 255, 0]
|
||||
@ -57,7 +58,10 @@ def decensor():
|
||||
cnt += 1
|
||||
img = completion[i]
|
||||
img = np.array((img + 1) * 127.5, dtype=np.uint8)
|
||||
output = Image.fromarray(img.astype('uint8'), 'RGB')
|
||||
original = x_batch[i]
|
||||
original = np.array((original + 1) * 127.5, dtype=np.uint8)
|
||||
output = blend(original, img, mask_batch[0,:,:,0])
|
||||
output = Image.fromarray(output.astype('uint8'), 'RGB')
|
||||
dst = './decensor_output_images/{}.png'.format("{0:06d}".format(cnt))
|
||||
output.save(dst)
|
||||
|
||||
|
108
poisson_blend.py
Normal file
108
poisson_blend.py
Normal file
@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse
|
||||
import PIL.Image
|
||||
import pyamg
|
||||
import copy
|
||||
|
||||
# pre-process the mask array so that uint64 types from opencv.imread can be adapted
|
||||
def prepare_mask(mask):
|
||||
result = np.ndarray((mask.shape[0], mask.shape[1]), dtype=np.uint8)
|
||||
for i in range(mask.shape[0]):
|
||||
for j in range(mask.shape[1]):
|
||||
if mask[i][j] > 0:
|
||||
result[i][j] = 1
|
||||
else:
|
||||
result[i][j] = 0
|
||||
mask = result
|
||||
return mask
|
||||
|
||||
def blend(img_target, img_source, img_mask, offset=(0, 0)):
|
||||
# compute regions to be blended
|
||||
region_source = (
|
||||
max(-offset[0], 0),
|
||||
max(-offset[1], 0),
|
||||
min(img_target.shape[0]-offset[0], img_source.shape[0]),
|
||||
min(img_target.shape[1]-offset[1], img_source.shape[1]))
|
||||
region_target = (
|
||||
max(offset[0], 0),
|
||||
max(offset[1], 0),
|
||||
min(img_target.shape[0], img_source.shape[0]+offset[0]),
|
||||
min(img_target.shape[1], img_source.shape[1]+offset[1]))
|
||||
region_size = (region_source[2]-region_source[0], region_source[3]-region_source[1])
|
||||
|
||||
# clip and normalize mask image
|
||||
img_mask = img_mask[region_source[0]:region_source[2], region_source[1]:region_source[3]]
|
||||
#img_mask_copy = copy.deepcopy(img_mask)
|
||||
# prepare_mask doesn't change anything
|
||||
# img_mask = prepare_mask(img_mask)
|
||||
# if np.array_equal(img_mask, img_mask_copy):
|
||||
# print "eq"
|
||||
img_mask[img_mask==0] = False
|
||||
img_mask[img_mask!=False] = True
|
||||
|
||||
# create coefficient matrix
|
||||
A = scipy.sparse.identity(np.prod(region_size), format='lil')
|
||||
for y in range(region_size[0]):
|
||||
for x in range(region_size[1]):
|
||||
if img_mask[y,x]:
|
||||
index = x+y*region_size[1]
|
||||
A[index, index] = 4
|
||||
if index+1 < np.prod(region_size):
|
||||
A[index, index+1] = -1
|
||||
if index-1 >= 0:
|
||||
A[index, index-1] = -1
|
||||
if index+region_size[1] < np.prod(region_size):
|
||||
A[index, index+region_size[1]] = -1
|
||||
if index-region_size[1] >= 0:
|
||||
A[index, index-region_size[1]] = -1
|
||||
A = A.tocsr()
|
||||
|
||||
# create poisson matrix for b
|
||||
P = pyamg.gallery.poisson(img_mask.shape)
|
||||
|
||||
# for each layer (ex. RGB)
|
||||
for num_layer in range(img_target.shape[2]):
|
||||
# get subimages
|
||||
t = img_target[region_target[0]:region_target[2],region_target[1]:region_target[3],num_layer]
|
||||
s = img_source[region_source[0]:region_source[2], region_source[1]:region_source[3],num_layer]
|
||||
t = t.flatten()
|
||||
s = s.flatten()
|
||||
|
||||
# create b
|
||||
b = P * s
|
||||
for y in range(region_size[0]):
|
||||
for x in range(region_size[1]):
|
||||
if not img_mask[y,x]:
|
||||
index = x+y*region_size[1]
|
||||
b[index] = t[index]
|
||||
|
||||
# solve Ax = b
|
||||
x = pyamg.solve(A,b,verb=False,tol=1e-10)
|
||||
|
||||
# assign x to target image
|
||||
x = np.reshape(x, region_size)
|
||||
x[x>255] = 255
|
||||
x[x<0] = 0
|
||||
x = np.array(x, img_target.dtype)
|
||||
img_target[region_target[0]:region_target[2],region_target[1]:region_target[3],num_layer] = x
|
||||
|
||||
return img_target
|
||||
|
||||
|
||||
def test():
|
||||
img_mask = np.asarray(PIL.Image.open('./testimages/test1_mask.png'))
|
||||
img_mask.flags.writeable = True
|
||||
img_source = np.asarray(PIL.Image.open('./testimages/test1_src.png'))
|
||||
img_source.flags.writeable = True
|
||||
img_target = np.asarray(PIL.Image.open('./testimages/test1_target.png'))
|
||||
img_target.flags.writeable = True
|
||||
img_ret = blend(img_target, img_source, img_mask, offset=(40,-30))
|
||||
img_ret = PIL.Image.fromarray(np.uint8(img_ret))
|
||||
img_ret.save('./testimages/test1_ret.png')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
BIN
readme_images/collage.png
Normal file
BIN
readme_images/collage.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 771 KiB |
22
readme_images/format_results.py
Normal file
22
readme_images/format_results.py
Normal file
@ -0,0 +1,22 @@
|
||||
from PIL import Image
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def format_results(images, dst):
|
||||
fig = plt.figure()
|
||||
for i, image in enumerate(images):
|
||||
text, img = image
|
||||
fig.add_subplot(1, 3, i + 1)
|
||||
plt.imshow(img)
|
||||
plt.tick_params(labelbottom='off')
|
||||
plt.tick_params(labelleft='off')
|
||||
plt.gca().get_xaxis().set_ticks_position('none')
|
||||
plt.gca().get_yaxis().set_ticks_position('none')
|
||||
plt.xlabel(text)
|
||||
plt.savefig(dst)
|
||||
plt.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
masked = Image.open("censored.png")
|
||||
img = Image.open("decensored.png")
|
||||
raw = Image.open("original.png")
|
||||
format_results([['Input', masked], ['Output', img], ['Ground Truth', raw]], "result.png")
|
Loading…
x
Reference in New Issue
Block a user